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I 

INTRODUCTION 

This   progress   report   d iscusses   the  research  performed  under  NASA 

Grant NsG-490 covering  the  per iod  f rom  February 1 t o  September 1, 1964. 

The purpose  of t h i s  g r a n t  i s  t h e   a p p l i c a t i o n  and ex tens ion  of modern auto-  

matic control   theory  to   nuclear   rocket   dynamics  and  control .  The r e p o r t  

i s  composed of four   independent   sect ions  each  covering a s p e c i f i c   p a r t   o f  

t he   r e sea rch  program. 

Sec t ion  I "Closed-Loop  Sub-optimal  Control  Employing  the  Second 

Method of  Liapunov" p resen t s  a  new approach  to   the  synthesis   problem. It 

i s  an   a t t empt   t o  combine the  Second Method of  Liapunov  and  Pontryagin's 

Maximum P r i n c i p l e  and r e s u l t s   i n  a c losed- loop   cont ro l ,   as  compared t o  

open-loop  control  obtained  using  the Maximum P r i n c i p l e ,  The r e s e a r c h   t o  

date   has   been  concerned  with  developing  the  foundat ion  for   this   approach.  

The work to   be  performed  during  the  next   report   per iod w i l l  be   devoted  to  

t h e   a p p l i c a t i o n s   o f   t h i s   c o n c e p t   t o   t h e   c o n t r o l   o f   b i l i n e a r   n u c l e a r   r o c k e t  

system. 

Sec t ion  I1 "Non l inea r   S t ab i l i t y   o f  Coupled  Core  Reactor" i s  a 

s tudy of t he   app l i ca t ion   o f   t he  Second Method of  Liapunov t o   t h e   s t a b i l i t y  

o f   c lu s t e red   nuc lea r   rocke t   eng ines .   P rev ious   s t ab i l i t y   ana lys i s   o f   coup led  

core  systems  has  been  based  on  l inear  reactor  models,   with  approximations 

t o  the   neut ron   t ranspor t   de lay  times. The  purpose of t h i s   r e s e a r c h  i s  t o  

cons ider  more r ea l i s t i c   sys t em  mode l s   w i th   t rue   de l ay  times and to   de te rmine  

reg ions  of s t a b i l i t y .  

Sec t ion  111 "Synthesis  of  Optimal  Closed-Loop  Control  for  Nuclear 

Rocket   Systems"  considers   the  real izat ion of a c l o s e d   c o n t r o l   f o r   a n   o p t i m a l  

c o n t r o l  law determined by the  Maximum Pr inc ip l e .   In   phys i ca l   sys t ems   va r ious  



types of dis turbance  are   encountered  which makes open-loop  control  i m -  

p r a c t i c a l .   T h i s   s e c t i o n   t r e a t s   t h e   d e t e r m i n a t i o n  of a c losed   l oop   con t ro l  

i n   t he   p re sence   o f  measurement no i se   and   ex te rna l   d i s tu rbances .   Seve ra l  

approaches  to  the  problem  are  discussed  and  an  example  worked. 

S e c t i o n  IV l lL imi t s   o f   Va l id i ty   fo r  Some Approximations i n  

Reactor Dynamics" evolved   as  a s i d e   i n t e r e s t   i n   t h e  program. It was f e l t  

t o   b e   o f   s u f f i c i e n t   i m p o r t a n c e   t o  be   i nc luded   i n   t he   r epor t .   Th i s   s ec t ion  

d iscusses   var ious   approximat ions   to   the   response   o f  a r e a c t o r   t o  a cons tan t  

r a t e   o f   r e a c t i v i t y   i n c r e a s e .  Such   approximat ions   a re   o f   par t icu lar   in te res t  

du r ing   s t a r t -up .  

Another  part  of the   research   program  for   which   insuf f ic ien t  

progress  has  been made t o   w a r r a n t  a r e p o r t  i s  t h e  work o n   t h e   s t a b i l i t y  

of  loosely-coupled  higher  order  system.  This  phase of the  program  recent ly  

begun i s  concerned  with  the  use  of  the Second Method in   de t e rmin ing   r eg ions  

o f   s t a b i l i t y  of  such  systems. It will be some time be fo re   de f in i t e   i n fo rma-  

t ion   can   be   ob ta ined .  
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SECTION I 

CLOSED-LOOP  SUB-OPTIMAL CONTROL EMPLOYING THE SECOND  METHOD OF LIAPUNOV 

Chapter 1 

INTRODUCTION AND ORGANIZATION 

1.1 In t roduc t ion  

The  problem  of  controlling a system  such  that  i t s  performance 

approximates  in some sense a desired  performance  has been important   for  a 

long time. A na tu ra l   ou tg rowth   o f   t h i s   i n t e re s t  i s  the   op t imal   cont ro l  

problem: c o n t r o l l i n g  a system  in  such a manner t h a t  i t s  performance is  

the   bes t   poss ib le .  

Wi th in   t he   l a s t  few yea r s ,   s eve ra l ,   r a the r   e l egan t ,   gene ra l  

methods of solving  the  opt imal   control   problem have  been presented. 

Notable among these  i s  the  maximum p r i n c i p l e  of  Pontryagin.   In   general ,  

t hese  methods  involve  unwieldly  computations  for a l l  b u t   t r i v i a l  problems. 

Also i n  many cases ,   the   control   once  obtained i s  of  an  open-loop  nature, 

t h a t  is ,  v a l i d   f o r   o n l y  one i n i t i a l   c o n d i t i o n  and  no  disturbances. 

The d i f f i c u l t i e s   a s s o c i a t e d   w i t h   t h e s e  methods  have  led t o  a 

growing  gap  between t h e o r e t i c a l  and p r a c t i c a l   c o n t r o l  work. To f i l l   t h i s  

gap, there   has  been  an ever-increasing  development of spec ia l   t echniques  

for   special   problems  which  general ly   lead  to   sub-opt imal   control ,   control  

which is  accep tab ly   c lose   t o   t he   t rue   op t ima l   bu t   p rac t i cab le .  

I n   t h i s  work, t he  Second Method of  Liapunov is  used as a bas i s  

for   developing  such a method for   c losed-loop  opt imal   control   of  l inear 

systems  with a bounded c o n t r o l  norm. This method cen te r s  on the   so lu t ion  

of a p a r t i a l   d i f f e r e n t i a l   e q u a t i o n  which is  equivalent   to   the  Hamil ton-  

Jacobi   equat ion.  A s p e c i a l  class of   so lu t ions ,   ca l led   e igenvec tor  scalar 
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products,  is shown t o  exis t .  These  solut ions are combined t o  form a 

sub-opt imal   control  method  which  provides a p r a c t i c a l  compromise  between 

system  complexity  and  speed  of  response. 

However, the  development of t h i s  method is, a t  present ,  s t i l l  

incomplete.   Therefore  the material i n   t h i s   r e p o r t  i s  bas i ca l ly   o f  a 

background nature   and  hence  l imited  in  i t s  usefulness .   Current   research 

i s  pointed  toward  extending  the  approach  in  order  to make i t  app ly   t o  a 

wider  range  of  problems  and  hence  to  increase i t s  usefu lness .   Pre l imin-  

a r y   r e s u l t s  have ind ica t ed   t ha t   t h i s   a t t empt   shou ld  be very  successful .  

Seve ra l   fu tu re   r e sea rch   t op ic s   a r e   d i scussed   i n   t he  l as t  chapter .  

1.2 Organization  of  the  Report  

Th i s   r epor t   cons i s t s  of t h r e e   b a s i c  par ts .  The f i r s t   p a r t  

comprising  Chapter 1, 2, and 3 i s  in t roductory   in   na ture .   Fol lowing   the  

in t roduc to ry   ma te r i a l   i n   t h i s   chap te r ,   t he   bas i c   op t imiza t ion  problem t o  

be considered i s  formulated  in  Chapter 2 .  Chapter 2 a l so   con ta ins  a 

brief  review  of a modified  form  of  the maximum principle   which  has  been 

termed  the minimum pr inc ip le .   In   Chapter  3 a b r i e f   i n t r o d u c t i o n   t o   t h e  

Second Method of  Liapunov is  p r e s e n t e d   i n   o r d e r   t o  make the  work a s e l f -  

conta ined   un i t .  

Chapters 4 and 5 form the   second  par t ,   the   theore t ica l   hear t .   In  

Chapter 4,  the  Second Method i s  combined wi th   t he  minimum p r i n c i p l e   t o  

develop  another  approach  to  the  basic  optimization  problem. It i s  

demonstrated  that   solving  the  basic  optimization  problem i s  equiva len t  

t o   so lv ing  a f i r s t - o r d e r   p a r t i a l   d i f f e r e n t i a l   e q u a t i o n  which is i d e n t i c a l  

to  the  Hamilton-Jacobi  equation.  Although no genera l  method of   solving 
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t h i s   equa t ion  i s  known, a s p e c i a l   c l a s s   o f   s o l u t i o n s  i s  shown t o   e x i s t .  

This   c lass   o f   so lu t ions ,   ca l led   e igenvec tor   sca la r   p roducts ,  is developed 

and   d i scussed   i n   de t a i l   i n   Chap te r  5. 

The th i rd   pa r t ,   cons i s t ing   o f   Chap te r  6 ,  is t h e   p r a c t i c a l   p o r t i o n  

of   the work. In   Chapter  6 ,  the   e igenvec tor   sca la r   p roduct   so lu t ions   a re  

combined t o  form an ef fec t ive   sub-opt imal   cont ro l  method for   systems  in  

xhich   the   cont ro l   mat r ix   i a   non-s ingular .   In   th i s  form, the  sub-optimal 

c o n t r o l  method p rov ides   an   e f f ec t ive   so lu t ion   t o  a l i m i t e d   c l a s s  of 

prac t ica l   sys tems.  

Chapter 7 conta ins  a discussion  of  the  concepts  introduced  and 

seve ra l   i deas   fo r   fu r the r   r e sea rch .  Examples are   presented  throughout  

t he  work  whenever they   can   s e rve   t o   be t t e r   i l l u s t r a t e  a po in t .  

A bas ic  knowledge of vector  and mat r ix   a lgebra  i s  expected  of  the 

reader ,   as   wel l   as   an   unders tanding   of   the   s ta te   var iab le  method of 

formulating  control  problems.  Although a brief  review  of  the minimum 

p r i n c i p l e  and the  Second Method are   presented,   the   reader  who i s  not  

f ami l i a r   w i th   t hese  methods may wish  to   consul t  some of  the  suggested 

r e fe rences   fo r  a more in t roductory   p resenta t ion .  
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Chapter 2 

MINIMUM PRINCIPLE 

2 . 1  In t roduc t ion  

This   chapter   consis ts   of  two bas i c  

optimization  problem  of  this work i s  formu 

d e f i n i t i o n s  and  notation.  Second, a b r i e f  

par ts .  First ,  the  bas ic  

l a t e d ,   i n c l u d i n g   a l l   n e c e s s a r y  

descr ip t ion   of   the  minimum 

p r i n c i p l e  method f o r   s o l v i n g   t h i s  problem i s  presented.   Since  extensive 

accounts   o f   th i s  method may be found i n   t h e   l i t e r a t u r e 3 j 4 j 5 ,   o n l y   t h e  

a s p e c t s   p e r t i n e n t   t o   t h e   p a r t i c u l a r  problem  of t h i s  work a re   inc luded .  

Those f ami l i a r   w i th   t he  minimum p r i n c i p l e  m y  w i s h   t o   s k i p   s e c t i o n  2.4. 

The chapter  concludes  with a short   d iscussion  of   the  inadequacy 

of the minimum pr inc ip le   approach   in   so lv ing   the   op t imiza t ion  problem. 

2 .2  Notation 

In   t h i s   s ec t ion ,   t he   no ta t ion   wh ich  w i l l  be used  throughout i s  

explained.   In   general ,   the   s ta te   space  approach w i l l  be employed, 

u t i l i z ing   vec tor -mat r ix   formula t ion .   Vectors  w i l l  be ind ica t ed  by lower 

case Roman l e t t e r s   s u c h  as x, u. One e x c e p t i o n   t o   t h i s   r u l e  w i l l  be the 

l e t t e r  t, which w i l l  ind ica te   t ime,  a s c a l a r .  The components  of a vec tor  

w i l l  be ind ica t ed  by subscr ip ted  lower case Roman l e t t e r s ,   t h e r e f o r e  

x = (XI,  x2, ..., xn) .   Pa r t i cu la r   vec to r s  w i l l  be ind ica t ed  by super-  

s c r i p t s ,   t h e r e f o r e  x = (x1, x2,.  ..,xn). 1 1 1  1 
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Matrices  w i l l  be designated by underlined  upper  case Roman l e t t e r s  

such as A, E; s c a l a r s ,  by upper  case Roman l e t t e r s   o r  Greek l e t t e r s .  The 

transpose  of a ma t r ix   o r   vec to r  w i l l  be designated by a prime,  t he re fo re  

x '  i s  the   t ranspose  of t he   vec to r  x. 

The notat ion  hL(x)/bx w i l l  be u s e d   t o   i n d i c a t e  a vec tor  whose 

components cons i s t   o f   t he   pa r t i a l   de r iva t ives   o f   L (x ) ,   t hus%L(x) /bx  = 

(aL(x)/dxl,..  .,&L(x)/hxn). The no ta t ion  VL(x) w i l l  a l s o  be used when the  

d i f f e r e n t i a t i o n  is wi th   r e spec t   t o   x ;   t hus ,  VL(x) = bL(x)/bx. 

2 . 3  Formulation  of  the  Basic  Optimization  Problem 

It w i l l  be assumed t h a t   t h e   s t a t e  of the  control  system  can be 

completely  described a t  any i n s t a n t  of t i m e  by n r e a l  numbers, XI, xz,..., 

x . The behavior  (or  motion) of the  system as a function  of  t ime may then 

be descr ibed by n r ea l   func t ions   o f  time, x l ( t ) ,   x z ( t ) ,  ..., xn(t) .   These 

v a r i a b l e s ,   c a l l e d   s t a t e   v a r i a b l e s ,   a r e   t h e  Components o f   t h e   s t a t e   v e c t o r  

n 

x ( t >  = ( q ( t ) ,   x 2 ( t ) ,  . , x 3 ( t ) ) .  

It  w i l l  be f u r t h e r  assumed that  the  motion of the  system  can be 

con t ro l l ed  by a s e t   o f  r r e a l   v a l u e d   c o n t r o l   v a r i a b l e s ,   u l ( t ) ,   u 2 ( t ) ,  ... 
u r ( t ) ,  which a r e   t h e  components o f   t h e   c o n t r o l   v e c t o r ,   u ( t ) .  The set  of 

a l l  possible   values   of  u i s  ca l led   the   cont ro l   reg ion ,  U, a subse t  of a 

r -dimensional   Eucl idean  space.   In  most p r a c t i c a l   a p p l i c a t i o n s ,  U i s  closed 

and  bounded. 

For   the  present  work U w i l l  c o n s i s t  of t he  set  of a l l  u s u c h   t h a t  

llJ&1f f C? where 2 is  a non-singular  matrix  and CY is  a rea l  constant .  

However, by a s i m p l e  change of v a r i a b l e s  w = (Y12u, ll@112 L - d! becomes 

Ilw 1. Hence t h e r e  is  no loss of   gene ra l i t y   i n   cons ide r ing  2 t o  be 
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t h e   i d e n t i t y   m a t r i x  and Q t o  be uni ty .  Thus U w i l l  be t h e   s e t   o f  all u 

such   tha t  llu 11 f 1. I f  u(t)CU  and is, in   addi t ion,   p iecewise  cont inuous,  
2 

t h e n   u ( t )  is  ca l led   an   admiss ib le   cont ro l .  

The only   sys tems  to  be considered  here   are   ones  for   which  the laws 

of  motion may be w r i t t e n  as  a se t  of n f i r s t - o r d e r   l i n e a r   e q u a t i o n s .  

O r  wr i t t en   i n   vec to r -ma t r ix   no ta t ion  

x = Ax + Bu 

It w i l l  be assumed tha t   cor responding   to   every   admiss ib le   cont ro l  

u ( t )  and  every i n i t i a l   c o n d i t i o n  xo = x(to),   that   the  motion  of  the  system 

i s  defined  uniquely by the  solut ion  of   equa ' i ion (2.2). This   so lu t ion  is 

ca l led   the   so lu t ion   (or   mot ion)   o f   the   sys tem  cor responding   to   the   cont ro l  

u ( t )   f o r   t h e   i n i t i a l   c o n d i t i o n  xo. 

An admiss ib le   cont ro l  i s  sa id   t o   t r ans fe r   t he   sys t em from xo t o  x 1 

i f  the   so lu t ion   cor responding   to   tha t   cont ro l   and   the   in i t ia l   condi t ion  

X' i s  def ined   for  to f t 5 t l  and  reaches x a t   t h e  time tl. 1 

Since ,   in   genera l ,   there  may be many admissible   controls   which 

t ransfer   the   sys tem from xo t o  x , the   ques t ion   which   na tura l ly   a r i ses  is, 

"Which admiss ib l e   con t ro l ,   i n   add i t ion   t o   t r ans fe r r ing   t he   sys t em from x 

t o  xl, minimizes some cos t   func t iona l  

1 

0 

where L(x) is  a r e a l  and  posi t ive-valued  funct ion of t h e   s t a t e   v e c ~ o r ? "  
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It should be n o t e d   t h a t   f o r   f i x e d   p o i n t s   t h e   t r a n s i t i o n  time, 

t l  - to, i s  not   f ixed   bu t  is dependent   on  the  par t icular   control   used.  

One example  of par t icular   importance is  the  case when L(x) = 1 and  the 

cos t   func t iona l ,  J, reduces   to  t l  - to, t h e   t r a n s i t i o n  time. This is the  

familiar  time-optimal  problem  which is  t r e a t e d   i n   d e t a i l   i n  la ter  chapters .  

A control  which  transfers  the  system  from xo t o  x while 

minimizing  the  cost   funct ional  is  c a l l e d  an  optimal  control  corresponding 

t o  a t r a n s i t i o n  from xo t o  X . For  convenience, x' i s  considered  to  be 

t h e   o r i g i n   f o r   t h e   r e s t   o f   t h i s  work. 

1 

1 

The opt imal   cont ro l  may be found i n  two d i f f e ren t   fo rms .   F i r s t ,  

t h e   c o n t r o l   v a r i a b l e s  may be obta ined  as functions  of time during  the 

t r a n s i t i o n   i n t e r v a l  t l  - to f o r  a g i v e n   i n i t i a l   c o n d i t i o n  xo. This i s  

ca l led   open- loop   cont ro l ,   s ince  no information  concerning  the  system 

s t a t e  is  needed o r   u sed   du r ing   t he   t r ans i t i on   i n t e rva l .  

Second,  the  control  variables may be determined as e x p l i c i t  

func t ions   o f   the   sys tem  s ta te ,   i . e . ,  u = u(x) .   This  is  ca l led   c losed-  

loop  control ,   s ince knowledge  of t he   sys t em  s t a t e  i s  used  during  the 

t r a n s i t i o n   i n t e r v a l .  The advantages of c losed- loop   cont ro l   a re   wel l  

e s t a b l i s h e d   i n   t h e   l i t e r a t u r e 1 j 2  and therefore   on ly   th ree   po in ts   a re  

mentioned  here. F i r s t ,  feedback  or   c losed-loop  operat ion  reduces  the 

e f f e c t  of  system  parameter  variations.  Second,  feedback  operation 

minimizes   the   e f fec t   o f   ex te rna l   d i s turbances .   Thi rd ,   in  many p r a c t i c a l  

cases   the  equat ions  of   motion  are  known only  approximately. By the  use 

of  closed-loop  control,   variations  in  the  systems  motion due to   t hese  

inaccuracies  can be minimized.  Thus i t  appears  obvious  that   not  only 

should  one  seek  opt imal   control ,   but ,   in   general ,   one  should  seek 

closed-loop  opt imal   control .  
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The fundamental  problem may then be s t a t e d   i n   t h e   f o l l o w i n g  form. 

Given a l inear   sys tem whose laws of  motion are descr ibed  by equat ion (2.2>, 

it i s  des i red   to   f ind   an   op t imal ,   c losed- loop ,   admiss ib le   cont ro l  

cor responding   to  a t r a n s i t i o n  from xo t o   t h e   o r i g i n   w i t h  a cos t   func t iona l  

of  the  form  of  equation ( 2 . 3 ) .  Additional  assumptions  concerning  the 

system  and  the  cost   functional w i l l  be made i n   l a t e r   c h a p t e r s .  

The next  section  presents  the  basic  formulation  and  theorems  of 

the  minimum pr inc ip l e ,  a method for   ob ta in ing   an   open- loop   so lu t ion   of   the  

above  problem. 

2.4 ' Minimum P r i n c i p l e  

The concept  of  the minimum p r i n c i p l e  was f i r s t   i n t r o d u c e d  by 

Kalman3 as a minor  modification  of  the maximum principle   developed by 

Pontryagin  and  his   s tudents  . The e s s e n t i a l   d i f f g r e n c e s  between the two 

approaches  are  noted below. The minimum p r i n c i p l e  is  a log ica l   ex tens ion  

o f   t he   c l a s s i ca l   ca l cu lus   o f   va r i a t ions  and  provides a broad  and  unifying 

approach  to a wide var ie ty   o f   var ia t iona l   and   op t imal   cont ro l   p roblems.  

Only those  aspects  of  the  theory  which  are  pertinent  to  the  problem  of 

the   p receding   sec t ion   a re   p resented   here .  

4 

As t h e   f i r s t   s t e p   i n   t h e  minimum principle   approach,  a new s e t  

of n va r i ab le s ,  pi, a r e   a d j o i n e d   t o   t h e   s t a t e   v a r i a b l e s ,  xi,  of  the  system. 

These new v a r i a b l e s ,   c a l l e d   a d j o i n t   v a r i a b l e s ,   a r e   d e f i n e d  by the  fol lowing 

set  of   d i f fe ren t ia l   equa t ions ,   the   ad jo in t   equa t ion .  

n . 



Next a scalar func t ion  H analogous  to  the  Hamiltonian i s  def ined by 

It can be r e a d i l y   v e r i f i e d   t h a t   e q u a t i o n s  (2 .2 )  and (2 .4)  can be r ewr i t t en  

i n  terms of  H(x,p,u) in   the  fol lowing  system  of   equat ions  which are 

analogous  to  the  Hamiltonian  canonic  equations.  

xi = - (H(x,p,u)) 
b 

b p i  

For   f ixed  values   of  x and p, H becomes a func t ion   of   the   cont ro l  

vec tor  u. The g r e a t e s t  lower bound o f   t h i s   func t ion   w i th   r e spec t   t o  

admiss ib le   cont ro ls  uEU w i l l  be denoted by Ho, t he re fo re  

I f  the  cont inuous  funct ion H a c t u a l l y  assumes i t s  lower bound on U, then 

Ho w i l l  be the  minimum of H on U. This w i l l  be t r u e   f o r   a l l  problems i n  

t h i s  work,  hence 

H0(x,p) = min H(X,P,U) 
uc u 

The corresponding  minimizing  control w i l l  be designated by u . 0 

The following  theorem  presents a necessary   condi t ion   for   the  

opt imal i ty   o f  a c o n t r o l  u. 

Theorem 2 . 1  Le t   u ( t ) ,  to 5 t 5 tl, be an  admissible   control   such 

tha t   the   cor responding   mot ion   x( t )   which   begins   a t   the   po in t  xo 

a t  time to r e a c h e s ,   a t  time tl, the   po in t  x . I n   o r d e r   t h a t   u ( t )  L 
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and x ( t )  be optimal,  i t  is n e c e s s a r y   t h a t   t h e r e   e x i s t  a nonzero 

con t inuous   vec to r   func t ion   p ( t )   co r re spond ing   t o   u ( t )   and   x ( t )  

such   t ha t :  

1) for   every  t, to f. t f tl, the   func t ion  H (x,p,u)  of  the 

v a r i a b l e  U E U  a t t a i n s  i t s  minimum a t  the   po in t  u = u ( t ) :  

H(x,p,u) = Ho(x,p) 

0 

2 )  for   every  t, to 5 t 5 tl, the  function  Ho(x,p) i s  

This  theorem  formulated  in  termsof  the minimum p r i n c i p l e  is 

e q u i v a l e n t   t o  a theorem  of  the maximum p r i n c i p l e   i n i t i a l l y  proven by 

Pontryagin . I n   t h e  maximum pr inc ip le   formula t ion ,   the   s ign   preceding  

L(x)  in  both  equation ( 2 . 4 )  and (2 .5 )  is negative..  Because of t h i s  

change, i t  i s  necessary   to   cons ider   the   l eas t   upper  bound of  H(x,p,u), 

r a the r   t han   t he   g rea t e s t  lower bound. Hence H i s  maximized ra ther   than  

minimized.  Although  the  use  of  the maximum p r i n c i p l e  i s  more common in 

the   l i t e ra ture ,   the   use   o f   the  minimum p r i n c i p l e  i s  more convenient   for  

t he  development  of  Chapter 4 and  thus i t  is employed here.  

5 

For  the  problem  presented  in  the  preceding  section,  the 

Hamiltonian is  given by 

H(X,P,U) = P'(AX + Bu) + L(x) 

= p'  Ax + p l  gu  + L(x) (2 .9)  

The ad jo in t   equa t ions  ( 2 . 4 )  may then be developed by use  of  equation (2.6) 

P = -A'p - VL(x)  

1 2  

(2.10) 



I 
.. . 

The n e x t   s t e p  is  the  minimizat ion  of   H(p,x,u)   with  respect   to  uLU. 

Since  the  middle  term on t h e   r i g h t   s i d e  of equat ion (2.9) i s  the scalar 

product  of two vectors ,   p 'g   and u, H(x,p,u) i s  minimized by making the 

. d i r e c t i o n  of u oppos i t e   t o   g ' p   and  making the  magnitude  of u a s   l a rge   a s  

poss ib le .  However, t he  norm of  u i s  r e q u i r e d   t o  be less than   or   equa l  

u n i t y  i n  o r d e r   f o r  u t o  be an  admissible   control .  Hence, u i s  s e l e c t e d  

t o  be a vec to r   w i th   un i t  norm ( l eng th )  and d i r ec t ion   oppos i t e  g ' p :  

(2.11) 

S u b s t i t u t i n g  u as   given by equat ion  (2 .11)   into  the  equat ions  (2 .2)   and 

(2 .9 ) ,   t he   fo l lowing   s e t   o f   coup led   f i r s t -o rde r   o rd ina ry   d i f f e ren t i a l  

equat ions   a re   ob ta ined .  

; ( = A X + +  - 
HE PI1 (2.12) 

p = -A 'p  -VL(x)  (2 .13 )  

with  the  boundary  condi t ions  x( to)  = x0 and x ( t 1 )  = x 1  and the   aux i l i a ry  

condi t ion  Ho(x,p) = 0. 

The d i f f i c u l t i e s   i n h e r e n t   i n   t h e  minimum pr inc ip le   approach   a re  

now obvious .   F i r s t ,   the   s imul taneous   so lu t ion   of   equa t ions   (2 .12)  and 

(2.13) is  not   e lementary ,   s ince   bo th   equat ions   a re   in   genera l   nonl inear .  

The adjoint   equat ions  have no  boundary  conditions  while  the  system 

equations  have  second  boundary  conditions  which  creates  the so c a l l e d  

"two-point"  boundary  value  problem.  Normally  numerical  solution of these  

equat ions is  necessary.  Second, t he   con t ro l  as determined by the  

minimum p r i n c i p l e  i s  open-loop  control,  i.e., u = u( t )   no t   u (x ) .  
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Another  method for   a t tack ing   the   bas ic   op t imiza t ion   problem of  

the   p receding   sec t ion  is presented   in   Chapter  4. The method is  based on 

both  the  Second Method of  Liapunov  and  the minimum p r i n c i p l e  and  attempts 

t o  remove o r   a l l e v i a t e   t h e   d i f f i c u l t i e s   m e n t i o n e d  above. I n   p a r t i c u l a r ,  

t he   con t ro l   vec to r  is  found as a f u n c t i o n   o f   t h e   s t a t e   v a r i a b l e s ,  i.e., 

c losed-loop  control .  However, be fo re   p roceed ing   t o   t ha t  development, it 

is  necessa ry   t o   p re sen t  some of   the  basic   def ini t ions  and  theorems  of   the 

Second  Method. 
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Chapter 3 

SECOND METHOD OF LIAPUNOV 

3 . 1  In t roduc t ion  

The  Second Method of  Liapunov  provides  the  most  general  approach 

t o   t h e   s t a b i l i t y  of  dynamic  systems  whose laws of  motion are descr ibed 

by o rd ina ry   l i nea r   o r   non l inea r   d i f f e ren t i a l   equa t ions .   Th i s   chap te r  

presents  a br ief   review  of   the  basic   concepts   and  def ini t ions  of   the 

Second Method.  Only those  portions  of  the  theory  which are d i r e c t l y  

a p p l i c a b l e   t o   t h e  problem a t  hand w i l l  be discussed. The reader  is 

d i r e c t e d   t o   t h e   l i t e r a t u r e   f o r  a more complete  presentation 9 
6 7,8,9 

I n   t h i s   c h a p t e r ,   t h e  dynamic  systems  under  consideration  are 

assumed t o  be autonomous  and d e s c r i b a b l e   i n   s t a t e   v a r i a b l e  form as n 

f i r s t - o r d e r   d i f f e r e n t i a l   e q u a t i o n s   o f   t h e  form 

I n   m a t r i x   n o t a t i o n ,   t h i s  may be w r i t t e n  as 

; = f ( x )  

Such a system is  c a l l e d  autonomous. It is  obvious  that   for   c losed-loop 

cont ro l   the   sys tem  of   equa t ion  ( 2 . 2 )  is  o f   t h i s  form s ince  it  becomes 

x = - Ax + &(x) 

= f ( x )  
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The equi l ibr ium s t a t e  be ing   inves t iga ted  is  assumed t o  be loca ted  

a t  the   o r ig in .   This  is ac tua l ly   no   r e s t r i c t ion ,   s ince   any   equ i l ib r ium 

po in t  may always be t r a n s l a t e d  by s i m p l e  l i n e a r  change  of   var iables   to   the 

o r i g i n .  Again the  system  discussed i n  Chapter 2 s a t i s f i e s   t h i s   a s s u m p t i o n  

s ince   t he   con t ro l  is always  chosen  such as t o   d r i v e   t h e   s y s t e m   t o   t h e  

o r i g i n .  

Th i s   chap te r   cons i s t s   o f   t h ree   pa r t s .   F i r s t ,   t he   de f in i t i ons   o f  

d e f i n i t e n e s s  and s t a b i l i t y   a r e   p r e s e n t e d .  Second, a modified  Liapunov 

s t a b i l i t y  theorem is  s ta ted   wi thout   p roof .   Thi rd ,   th i s   s tab i l i ty   theorem 

is given a geometr ic   in te rpre ta t ion .  

3.2 Def in i t i ons  

The concepts   of   def ini teness   play  an  important   role   in   the 

s t a b i l i t y   t h e o r e m s .  The fol lowing  def ini t ions,   which  fol low  Malkin,  are 

o f   i n t e re s t   he re .  

Def in i t i on  3.1 Pos i t ive   (Negat ive)   Def in i te  

A scalar funct ion,  V(x), i s  p o s i t i v e   ( n e g a t i v e )   d e f i n i t e   i f   f o r  
llxll 5 a V(x) > 0 (eo) f o r  a l l  x # 0 and V(0) = 0. 

Def in i t i on  3 . 2  Posi t ive  (Negat ive)   Semidefini te  

A sca l a r   func t ion ,  V(x), i s  p o s i t i v e   ( n e g a t i v e )   s e m i d e f i n i t e   i f  
f o r  11x11 - a V(x) 1 0 ( L O )  f o r  a l l  x # 0 and V( 0) =I 0. - - 

Def in i t i on  3 . 3  I n d e f i n i t e  

A sca l a r   func t ion ,  V(x), is  i n d e f i n i t e   i f  no mat te r  how small  Q 

i s  chosen, V(x) may assume both   pos i t ive   and   nega t ive   va lues   for  
II x II (2. 

I f   i n   t h e  above d e f i n i t i o n s  a may be made a r b i t r a r i l y   l a r g e ,   i n  which  case 

the   de f in i t i ons   ho ld   i n   t he  whole  space.  This w i l l  be t h e   c a s e   w i t h   a l l  

o f   t he   s ca l a r   func t ions   t o  be d iscussed   in   the   fo l lowing   chapters .  

16 
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A few examples w i l l  s e r v e   t o   c l a r i f y   t h e s e   d e f i n i t i o n s .  The 

funct ion 

is  pos i t i ve   de f in i t e   i f   t he   sys t em is  second-order,  but is only  semi- 

d e f i n i t e   i f   t h e   s y s t e m  is  of h igher   o rder ,   s ince   for  x1 = x2 = 0, V(x) 

w i l l  be zero  independent  of x3, xq,... . On the   o ther  hand the   func t ion  

V(x) = (x1 + x# 

is semidefinite  even  for  second-order  systems,  since  if  x1 = -x2,  V(x) 

w i l l  be zero  even  though  x i s  not   equal   to   zero.  The funct ion 

V(x) = x1 + x2 

i s  obviously  indefinite  independent  of  the  order  of  the  system. 

One c lass   o f   sca la r   func t ions   tha t  w i l l  be pa r t i cu la r ly   impor t an t  

i s  a quadra t ic  form. I n   t h i s   c a s e  V(x) may be w r i t t e n   i n   t h e  form 

V(x) = X'CX - 

where C i s  a constant   square  matr ix .   Usual ly   i f   V(x)  i s  a quadra t ic  form, 

the   de f in i t eness  of  V(x) i s  a t t r i b u t e d   t o  C. Hence one  speaks  of  a 

pos i t i ve   de f in i t e   ma t r ix .  

C lose ly   r e l a t ed   t o   t he   concep t   o f   de f in i t eness  i s  the  concept  of 

a  simple  closed  surface  (or  curve).  A su r face  is  s a i d   t o  be simple i f  

i t  does   no t   i n t e r sec t   i t s e l f  and  closed i f  i t  i n t e r s e c t s   a l l   p a t h s   t h a t  

lead from t h e   o r i g i n   t o   i n f i n i t y .  The reader  is reminded t h a t  it i s  

assumed t h a t   t h e   e q u i l i b r i u m   s t a t e  is  a t   t h e   o r i g i n .  Hence a  simple 

c losed   sur face  is  topo log ica l ly   equ iva len t   t o   t he   su r f ace   o f   an  

n-dimensional  sphere. Letov'' has shown t h a t   i f  a scalar   funct ion,   V(x) ,  
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is p o s i t i v e   d e f i n i t e  and, i n   add i t ion ,  is r a d i a l l y  unbounded, i.e., 

V(x) --c w a s  111 x I l . " c o O  , t h e n   t h e   s e t   o f   a l l   p o i n t s  x such   t ha t  V(x) = K, 

a pos i t ive   cons tan t ,  is  a s imple c losed   sur face .   In   addi t ion ,   the   sur face  
- 

v(x) = K1 l i e 8   e n t i r e l y   i n s i d e   t h e   s u r f a c e  V(x) = K2 whenever K1> K2. 

There  are  many types   o f   s tab i l i ty   tha t   have   been   def ined   for  

systems  that  may be descr ibed by equat ion (3.2). I n   t h e   c a s e   o f   l i n e a r  

systems,  almost a l l  of   these   def in i t ions   a re   equiva len t .   For   nonl inear  

systems,   this  is not   t rue .  However f o r   t h i s  work, o n l y   s t a b i l i t y   i n   t h e  

sense  of   Liapunov  and  asymptot ic   s tabi l i ty   are  of i n t e r e s t .  Hence only 

these  types of s t a b i l i t y   a r e   d e f i n e d .   L e t  S ( a )  be the   sphe r i ca l   r eg ion  

t h a t  Ilx I1 < Q. 

Def in i t i on  3 .4  Stable   in   the  Sense  of   Liapunov 

The o r i g i n  is  s t ab le   i n   t he   s ense   o f  Liapunov, or   s imply  s table ,  
i f  corresponding  to   every number e> 0 t h e r e   e x i s t s  a  number 
tj(e)> 0 s u c h   t h a t   s o l u t i o n s   s t a r t i n g   i n  S ( 6 )  w i l l  remain  in S(e) 
e v e r   a f t e r .  

Def in i t i on  3.5 Asymptot ical ly   Stable  

I f   t h e   o r i g i n  is  s t a b l e  and, i n   a d d i t i o n ,   e v e r y   s o l u t i o n   s t a r t i n g  
i n  S ( 6 )  no t   on ly   s t ays   i n  S(€) but  tends  toward  the  origin as 
time increases   indef in i te ly ,   then   the   o r ig in  is  asymptot ical ly  
s t a b l e .  

Def in i t i on  3 . 6  Unstable 

The o r i g i n  is  u n s t a b l e   i f   f o r  some E>O and  any 6>0, no  matter 
how small ,   there  is  always a poin t  x i n  S ( 6 )  such   tha t  a so lu t ion  
s t a r t i n g  from tha t   po in t   l eaves  S ( r ) .  

A graph ica l   r ep resen ta t ion   o f   t hese   de f in i t i ons  is  shown in   F igu re  3.1 

. f o r  a two-dimensional  case. 

The def in i t ions   emphas ize   the   loca l   charac te r  of s t a b i l i t y   f o r  

nonl inear   systems,   s ince  the  region S ( 6 )  may be a r b i t r a r i l y   s m a l l .   I f  

18 



I ** 

FIGURE 3.1 GRAPHICAL  REPRESENTATION 
OF STABILITY DEFINITIONS 
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the   region S ( 6 . )  i nc ludes   t he   en t i r e   space ,   t he   de f in i t i ons   a r e   ca l l ed  

global .  I n  the  chapters  which  follow  the main i n t e r e s t  i s  in   g loba l  

a sympto t i c   s t ab i l i t y ,   s ince   t he   sys t ems   a r e   l i nea r .  

3.3 S t a b i l i t y  Theorem 

As was the   case   wi th   def in i t ions   o f   s tab i l i ty ,   there   a re  many 

s t a b i l i t y  theorems  which  constitute  the  Second Method. Since  the  major 

concern of t h i s  work is  not   s tab i l i ty ,   on ly   one   theorem is  presented  here .  

T h i s   s t a b i l i t y  theorem,  due to   LaSal le  , d i f f e r s  from t h e   o r i g i n a l  

Liapunov  theorem i n   t h e   f i r s t   c o n d i t i o n  where  V(x) i s  allowed  to be 

7 

semidefinite,   as  long as it i s  not   zero on a soJution  of  the  system,  other 

t han   t he   o r ig in .   In   t he   o r ig ina l  theorem,  V(x) was r equ i r ed   t o  be 

n e g a t i v e   d e f i n i t e .  

Theorem 3 . 1   S t a b i l i t y  Theorem I f   t h e r e   e x i s t s  a p o s i t i v e  

d e f i n i t e   s c a l a r   f u n c t i o n  V(x)   w i th   con t inuous   f i r s tpa r t i a l s   such  

t h a t  

1) V(x) L - 0 f o r   a l l  x ( a t   l ea s t   nega t ive   s emide f in i t e )  

2)  V(X) "c 00 asllxII -"(radially  unbounded) 

t h e n   i f   c ( x )  i s  not   ident ical ly   zero  a long  any  solut ion of 

(3 .2)   other   than  the  or igin,   the   system i s  g loba l ly   asymptot ica l ly  

s t a b l e .  

Since  V(x)  has  continuous f i r s t   p a r t i a l s ,   t h e   c h a i n   r u l e  may be used  to 

ob ta in  V(x) 



which may be wr i t ten   wi th   the   use   o f   the   no ta t ion   W(x)  as 

;(x) = W ' ( X ) i  ( 3 . 3 )  

The basic  concept  of  the  Second Method is  now evident :  by proper 

s e l e c t i o n  or genera t ion   of  a Liapunov  V-function, i t  is p o s s i b l e   t o  

d e t e r m i n e   t h e   s t a b i l i t y  of a nonl inear  dynamic  system  without  any 

knowledge  of  the  solutions  of  the  system  equation. It i s  perhaps  of 

va lue   t o   i nves t iga t e   t he   s t ab i l i t y   t heo rem from a geometric  viewpoint. 

Since V(x) i s  p o s i t i v e   d e f i n i t e ,  and r a d i a l l y  unbounded  V(x) = K, 

a constant ,  becomes a family  of   concentr ic   c losed  surfaces   surrounding 

the   o r ig in   such   t ha t   t he   su r f ace  V(X) L= K1 l i e s   i n s i d e   V ( X )  K~ whenever 

K1> K2. Figure 3 . 2  shows a graphical   p ic ture   for   the  two-dimensional   or  

second-order  case.   Since  both  V(x)  and  c(x)  are  implicit   functions of 

time and +(x)  i s  r e q u i r e d   t o  be non-pos i t i ve ,   t he   s t a t e  of  the  system  must 

be found on successively  "smaller"  V(x) = K, a constant ,   surfaces  o r  must  

remain s t a t i o n a r y .  B u t  V(x)  cannot be zero on  any so lu t ion   except  x = 0; 

therefore   the  s ta te   of   the   system  cannot   remain  s ta t ionary.  Hence, t h e  

sys tem  t ra jec tory  must move toward  the  origin.  

Three   fea tures   o f   the  Second Method should be noted. F i r s t ,  the  

method p r o v i d e s   o n l y   s u f f i c i e n t   c o n d i t i o n s   f o r   s t a b i l i t y ;  hence i f  a 

sys t em  does   no t   s a t i s fy   t he   s t ab i l i t y  theorem,  no  conclusion may be drawn 

r e l a t i v e   t o   s y s t e m   s t a b i l i t y .  Second,  the  converse of t h e   s t a b i l i t y  

theorem  has  been  proven.  Therefore i f   t he   sys t em i s  s t ab le ,  a V-function 

must ex is t .   Thi rd ,   the   V-funct ion  i s  not unique,  which i s  one  of  the  most 

powerful  features  of  the  Second Method. No longer is  one  searching  for a 

s ing le   un ique   so lu t ion  to the   d i f fe ren t ia l   equa t ion   bu t   ra ther   for   one ,  
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o u t   o f  many, V-functions.  However because t h e  method provides  only 

s u f f i c i e n t   c o n d i t i o n s ,  some V-functions may provide a b e t t e r  answer  than 

others. 
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Chapter 4 

CLOSED-LOOP OPTIMAL CONTROL V I A  THE SECOND METHOD 

4.1 In t roduc t ion  

In   Chapter  2 the  basic  optimi-zation  problem was presented.   This  

was followed by one  method of   obtaining  an  open-loop  solut ion of the 

problem,  tke minimum pr inc ip l e .   In   t h i s   chap te r   ano the r  method  of 

a t t ack ing   t he   bas i c   op t imiza t ion  problem i s  presented.   This  method, based 

on the  Second Method of  Liapunov  and  the minimum pr inc ip le ,   y ie lds   c losed-  

loop  con t r o  1. 

I n  the   next   sec t ion  a b r i e f   d i scuss ion   o f   t he  background f o r   t h e  

use  of  the Second Method is  presented.   This  is  followed by two 

optimality  theorems  and  their   proofs.  I t  i s  demonst ra ted   tha t   so lv ing  

the  basic  optimzation  problem is  equ iva len t   t o   so lv ing  a f i r s t - o r d e r  

p a r t i a l   d i f f e r e n t i a l   e q u a t i o n   w h i c h  i s  ident ica l   to   the   Hami l ton-Jacobi  

equation.  Since no genera l  method  of so lv ing   t h i s   equa t ion  is  known, the 

approach  presented  here  has  not  solved  the  problem  but  has  rather 

formulated  the  problem  into a new framework. I n   t h i s  framework, a s p e c i a l  

c lass   o f   so lu t ions ,   ca l led   e igenvec tor   sca la r   p roducts ,  i s  shown t o  ex i s t  

in   the   next   chapter .  From these   so lu t ions ,  a method for   des igning  

ef fec t ive   c losed- loop ,   sub-opt imal   cont ro l  i s  developed. 

It  should be no ted   t ha t   t he   r e su l t s   o f   t h i s   chap te r  are no t  new, 

a l though  the method of  der iv ing  them is. A s  is  shown i n   t h e  las t  s e c t i o n  

o f   t h i s   chap te r ,   t he   r e su l t s   cou ld  have  been  derived  directly from the  
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Hamil ton-Jacobi   equat ion.   In   effect ,  a special   case  of  the  Hamilton- 

Jacobi   equa t ion  is  de r ived   i n   t h i s   chap te r .  It w a s  f e l t   t h a t   c a r r y i n g  

o u t   t h e  development i n   t h i s  manner adds   g rea t e r   i n s igh t   i n to   t he   r e l a t ion  

between t h e  Second Method and  optimal  control.  

4.2 Background 

The use   o f   the  Second Method of  Liapunov for   the   des ign  of opt imal  

systems  has  been  suggested by seve ra l   au tho r s  
11,12,13,14,15 . Unfortunate- 

ly,  almost a l l  of these  methods  have  three  basic  problems: 1) they are 

approximate,   2)  ei ther no est imate   of   the   approximation  error  is poss ib le ,  

o r   t he   e s t ima te  is overly  conservative,   and 3 )  i t  i s  necessary  to   choose 

a V(x) for  which no general   procedure is presented. Hence these  methods 

were  never  widely  accepted. (A b r i e f  resume of   several   of   these methods 

can be found i n   t h e  Appendix.) 

Nahi14  has recent ly   p resented  a procedure  for   using  the Second 

Method to   ob ta in   t ime-opt imal   cont ro l .  However, Nahi was on ly   ab le   t o  

f i n d   s o l u t i o n s   f o r  a r a the r   r e s t r i c t ed   c l a s s   o f   sys t ems .  It i s  shown later 

tha t   Nahi ' s  method i s  a spec ia l   case   o f   the  method presented  here.  . 
The determinat ion of V from  V(x) was discussed  in   Chapter  3 ;  the  

r e s u l t  is  repea ted   here   for   re fe rence .  

Now subs t i tu t ing   equat ion   (2 .2)   for  x, one ob ta ins  

i = W'(X)_AX + W' (x)Bu 

. 
Thus V becomes a func t ion  of both  the  control  and s t a t e  vec to r s   fo r  a 

given  V(x) .   In   the  fol lowing  discussion  the  notat ion V(x,u) w i l l  be used 
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t o   i n d i c a t e   t h i s  dependence  on  both u and X. 

I n  1960 Kalman and Berttram12 presented  a method fo r   des ign ing  

approximately  t ime-optimal  control  systems.  Their method was based  on 

t h e  knowledge t h a t   f o r  a closed, bounded con t ro l   r eg ion ,   t he   con t ro l  

vec tor  i s  always  on  the  boundary. They suggested 

minimizing  V(x,u)  with  respect  to a l l  admissible   controls   based on the  

argument t h a t   t h i s  would make V(x)  approach  zero  most  rapidly  and  hence 

the  system would r e a c h   t h e   o r i g i n   i n  minimum time. This  method s u f f e r s  

from a l l  of  the  disadvantages  noted  above  and  therefore  has  not  been  widely 

employed. However, the  concept  of  minimizing  V(x,u) is  valuable  and i s  

used below. 

0 

Retaining  the  idea  of  minimizing  V(x,u)  for  the moment, consider  

t he   imp l i ca t ion   o f   s e t t i ng  V(x) = -L(x).  Since  L(x) was r e q u i r e d   t o  be 

a t  l ea s t   pos i t i ve   s emide f in i t e ,  V(x) w i l l  thus be of   the  proper   nature ,  

Then V(x) becomes equ iva len t   t o   t he   cos t   func t iona l : .  

0 

Hence surfaces  of  constant  V(x) become sur faces   o f   cons tan t   cos t .  

The combination  of  these two concepts   sugges ts   the   idea   o f   se t t ing  

min c(x,u)  = -L(x). The question  remaining i s  "Does th i s   p rovide   op t imal  
u EU 
control?"  The fol lowing  sect ion  demonstrates   that   the   answer i s  

af f i rmat ive .  

Before  proceeding  with  the  proof   in   the  next   sect ion,  it should be 

po in ted   ou t   t ha t  a l l  of the  approaches  employing  the  Second Method y i e l d  

closed-loop  control .   This  i s  a f ea tu re   t ha t   canno t  be  over-emphasized. 
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4 .3  Optimali ty  Theorems 

In   the   p receding   sec t ion ,  i t  was sugges t ed   t ha t   t he   s e l ec t ion   o f  
min . 

a V-function,  V(x),  such  that utU  V(x,u) = -L(x),   would  yield  optimal 

cont ro l .   In   th i s   sec t ion ,   cor responding   op t imal i ty   theorems are s t a t e d  

and the i r   p roofs   g iven .  

Before  doing  this  i t  is  pe rhaps   o f   va lue   t o   s t a t e   t he   bas i c  

optimization  problem  again.  Given a l inear   system whose laws of  motion 

can be descr ibed by 

i t  is  des i red   to   f ind   an   op t imal ,   c losed- loop ,   admiss ib le   cont ro l  

corresponding t o  a t r a n s i t i o n  from  xo t o  the   o r ig in   w i th  a cos t   func t iona l  

of the  form 

J = \ t l L ( x ( t ) ) d t  

The control   region,  U, i s  the  se t  of a l l   c o n t r o l   v e c t o r s ,  u, such   tha t  

For   f ixed  values   of  x, V(x,u) becomes a continuous  function  of U. 

The minimum o f   t h i s   f u n c t i o n   w i t h   r e s p e c t   t o   a l l   a d m i s s i b l e   c o n t r o l  is  

designated by Vo(x). 

Ant ic ipa t ing   the   resu l t s   to   fo l low,   the   cor responding   min imiz ing   cont ro l  

is  again  denoted by u . 0 

Theorem 4.1 I f   t h e r e   e x i s t s  a Liapunov  function,  V(x),  with 

cont inuous   second  par t ia l   der iva t ives   wi th   respec t   to  x and  such 

t h a t  ;"(x) = -L(x) ,   then  the  control  uo which  minimizes  V(x,u) is  
. 

an  opt imal   control .  
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Before  carrying  out   the   proof   of   this   theorem,  consider   the  fol lowing 

lemma. 

Lemma 4.1 I f   t h e r e   e x i s t s  a Liapunov  function,  V(x),  with 

con t inuous   s econd   pa r t i a l   de r iva t ives   w i th   r e spec t   t o  x and  such 

t h a t  ;"(x) = -L(x),  then   the   g rad ien t   o f   V(x) ,   W(x) ,   sa t i s f ies  

t he   ad jo in t   equa t ion  (2.4).  

The f i r s t   s t e p   i n   t h e   p r o o f  of t h e  lemma i s  the  minimizat ion  of  

V(x,u) as   given by equat ion (4 .2 )  w i t h   r e s p e c t   t o  a l l  admissible   controls .  

The only  term  involving u is  a scalar   product   of  u and g 'W(x) .  Thus by 

an  argument   s imilar   to   that   presented  in   sect ion 2.4, u i s  found t o  be 0 

S e t t i n g  ;"(x) = -L(x) y i e l d s  

Now t ak ing   t he   pa r t i a l   de r iva t ive   o f   bo th   s ides   o f   equa t ion  ( 4 . 6 )  wi th  

r e s p e c t   t o  x gives  

Therefore 
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But  from equat ion (4 .5 )  

and  hence  equation (4.8) becomes 

By hypothesis   V(x)   has   cont inuous  second  par t ia l   der ivat ives ,   and  therefore  

the   ma t r ix   V(Wg(x) )  i s  symmetric.  Thus  V(W'(x)) = (V(W' (x ) ) ) ' .  Then 

subs t i t u t ing   equa t ion  (4.9) in to   equat ion  (4.10) one obta ins  

- (W(X>) - - A'W(x) - vIL(x) 
d 

d t  (4.11) 

Comparing equat ion  (4 .11)   with  the  adjoint   equat ion  (2 .13) ,  one notes  

t h a t   W ( x )   s a t i s f i e s   t h e   a d j o i n t   e q u a t i o n ,  which  completes  the  proof  of 

t he  lemma. 

Now returning  to   the  proof   of   theorem 4.1, W ( x )  i s  s u b s t i t u t e d  

f o r  p in  the  Hamiltonian as def ined by equat ion  (2 .9)   to   obtain 

H(x,W(x),u) = W'(x)Ax + W'(x)gu  + L(x) 
0 

= V(x,u) + L(x) 

Since  L(x) i s  n o t   a n   e x p l i c i t   f u n c t i o n   o f  u, 

O r  

Ho(x,W(x)) = +"(x) + L(x) 

(4.12) 

( 4 . 1 3 )  
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But by hypothesis,  V (x) = -L(x)  and  hence 
* O  

H0(x,W(x)) = 0 (4.14) 

Therefore   condi t ions 1 and 2 of  the minimum p r i n c i p l e  have  been s a t i s f i e d  

and uo must be an  optimal  control,  which  completes  the  proof  of  theorem 

4.1. Again i t  should be noted   tha t   the   cont ro l   g iven  by equat ion (4 .5 )  

i s  a closed-loop  control.   This  theorem i s  d i scussed   fu r the r   i n   t he   nex t  

sec t ion .  

The fo l lowing   theorem  ind ica tes   an   addi t iona l   re la t ionship  

between the  Second Method and  optimal  control.  

Theorem 4.2 I f   t h e r e   e x i s t s  a Liapunov  function  V(x)  with 

con t inuous   s econd   pa r t i a l   de r iva t ives   such   t ha t   W(x)   s a t i s f i e s  

t he   ad jo in t   equa t ion  and i f  uo i s  an  optimal  control,   then uo 

minimizes  V(x,u)  and V (x)  = -L(x). 
. -0 

Since uo is an  opt imal   control ,  i t  must  minimize  H(x,p,u).  But 

W(x)   s a t i s f i e s   t he   ad jo in t   equa t ion   and  hence it  can be s u b s t i t u t e d   f o r  

P =  Then u must a l s o  minimize  H(x,w(x),u). BY r e fe rence   t o   equa t ion  

( 4 . 1 2 ) ,  it can be concluded  that  uo must a l so   min imize   i (x ,u)   s ince   L(x)  

i s  not  a funct ion  of  uo. 

0 

, I  

An appl icat ion  of   the  second  condi t ion  of   the minimum p r i n c i p l e  

gives  

H(x,W(x),u) = Ho(x,W(x)) = 0 

But by use  of  equation ( 4 . 1 3 )  

;"(X) = H0(x,W(x)) - L(x) = -L(x) 

and  the  theorem is  proven. 
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In   the  next   sect ion,   theorems 4.1 and 4 . 2  are   d i scussed   fur ther ,  

i n   pa r t i cu la r   w i th   r e spec t   t o   t he   c l a s s i ca l   Hami l ton - Jacob i   equa t ion .  The 

existence  of  Liapunov  functions as required  for   these  theorems i s  a l s o  

discussed.  

4.4 Hamilton-Jacobi  Equation 

It w a s  demonst ra ted ,   in   the   p rev ious   sec t ion ,   tha t   the   op t imal  

con t ro l  problem  with a c o n s t r a i n t  on the  norm of   the   cont ro l   vec tor  is  

equiva len t   to   the   p roblem of s o l v i n g   t h e   f i r s t - o r d e r  p a r t i a l  d i f f e r e n t i a l  

equat ion 
;"(x) = -L(x) (4.15) 

It is  o f   i n t e r e s t   t o   n o t e   t h a t   e q u a t i o n  (4.15) is, i n   f a c t ,  a 

special   case  of   the   c lass ical   Hamil ton-Jacobi   equat ion.  The Hamilton- 

Jacobi   equa t ion  may be obtained by s e t t i n g  H ( x , w ( x ) )  = 0. Thus f o r   t h e  

problem  of  section 2 . 3 ,  one ob ta ins  

0 

Ho(x,W) = W'(X)&X - IIB'W(x)ll + L(x) = 0 

o r  
Ho(x,W(x)) = Vo(x) + L(x) = 0 

Use could  have been made o f   t h i s   f a c t   i n   t h e  development  of  the 

previous  sect ion.  However, i t  was f e l t   t h a t   g r e a t e r   i n s i g h t   i n t o   t h e  

use  of  the  Second Method was obtained by ca r ry ing   ou t   t he   p roo f   i n   t he  

manner presented. The  knowledge tha t   equa t ion  (4.15) i s  the  Hamilton- 

Jacobi   equat ion  does make i t  poss ib l e   t o   conc lude   t ha t   t he   ex i s t ence  of 

a so lu t ion   of   equa t ion  (4.15) is  s u f f i c i e n t   f o r   o p t i m a l   c o n t r o l   t o   e x i s t .  

This  is  an  advantage  over  the minimum p r i n c i p l e  where only  necessary 

cond i t ions   fo r   op t ima l i ty  are given. 
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Next,  one  might a s k   i f   s o l u t i o n s   o f   s u f f i c i e n t  smoothness, 

i.e., con t inuous   s econd   pa r t i a l ,   de r iva t ives   ex i s t   fo r   equa t ion  (4.15). 

Since   t he   so lu t ions   o f   i n t e re s t   i n   t he   fo l lowing   chap te r  do, ipso   fac to ,  

e x i s t ,   t h e   e x i s t e n c e   o f   s o l u t i o n s  i s  not   o f  prime importance  here. 

However, i t  i s  pe rhaps   o f   i n t e re s t   t o   l ook   b r i e f ly  a t  t h e  problem,  even 

though a complete  answer i s  not  known. 

Firs t ,  i t  can be shown by example t h a t   i f   t h e   c o n t r o l  is  scalar 

and the  system is a t  least   second-order ,   then  there  i s  no so lu t ion   o f  

s u f f i c i e n t  smoothness. I n   f a c t ,   t h e r e  i s  no solut ion  with  cont inuous 

f i r s t   p a r t i a l   d e r i v a t i v e s .  On t h e   o t h e r  hand, Krassovskii16  has shown 

t h a t   i f  i s  non-singular  and  L(x) = 1, then a so lu t ion   t o   equa t ion  

(4.15) e x i s t s   w i t h   c o n t i n u o u s   p a r t i a l   d e r i v a t i v e s   o f  a l l  order .  

Hence, one i s  faced  with a two-fold  problem. First, a s o l u t i o n  

may n o t   e x i s t ;  and  second, i f  one  does  exist ,  no genera l  method  of 

ob ta in ing  i t  is known. Therefore   the  basic   opt imizat ion  problem  has   not  

been  solved. The necessary   course   o f   ac t ion  i s  t o   o b t a i n  an  approximate 

so lu t ion .   In   the   next   chapter ,  a method for  modifying  the  Hamilton-Jacobi 

equat ion i s  followed by the   p re sen ta t ion   o f  a s p e c i a l   c l a s s   o f   s o l u t i o n s .  

From these   so lu t ions ,  a method for   des igning   e f fec t ive   sub-opt imal   cont ro l  

i s  developed. 
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Chapter 5 

EIGENVECTOR  SCALAR PRODUCT SOLUTIONS 

5.1 I n t r o d u c t z  

In   t h i s   chap te r ,  a spec ia l   c lass   o f   so lu t ions   o f   the   Hami l ton-  

Jacobi   equat ion is  shown t o   e x i s t .  These   so lu t ions ,   ca l led   e igenvec tor  

sca la r   p roducts ,   compr ise   the   f i r s t  of the  three  major   contr ibut ions  of  

t h i s  work. The second  major  contribution,  which i s  conta ined   in   the  

l a s t   s e c t i o n   o f   t h i s   c h a p t e r ,  is  the  development  of a method fo r   ob ta in ing  

surfaces  which bound the  opt imal   isochrones from the   ou ts ide .  The next  

chapter   forms  the  third  major   contr ibut ion,  a method  of  designing 

ef fec t ive   sub-opt imal   cont ro l   sys tems by the  use  of  the  eigenvector 

s ca l a r   p roduc t   so lu t ions ,  

The f i r s t  p a r t  o f   t h i s   chap te r   p re sen t s  a method of  modifying 

the  Hamil ton-Jacobi   equat ion  in   order   to   put   the   solut ion  into a more 

convenient form. This i s  followed by the   p resenta t ion   of   the   e igenvec tor  

sca la r   p roduct   so lu t ions .  The l a s t   s e c t i o n   o f   t h i s   c h a p t e r   d i s c u s s e s   t h e  

problem  of  bounding  the optimum cos t   func t iona l .  

5.2 Modif icat ion of Hamilton-Jacobi  Equation 

A method of  modifying  the  Hamilton-Jacobi  equation is  presented 

i n   t h i s   s e c t i o n  which  provides a more convenient   representa t ion   of   the  

s o l u t i o n s   t o  be d i scussed   i n   t he   nex t   s ec t ion .  One approach  might be t o  

make a nonl inear   t ransformat ion   of   coord ina tes   in   o rder   to   reduce   the  
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Hamilton-Jacobi  equation  to some elementary form. To da te   t h i s   app roach  

has  not  been  very  useful.  

Another  approach i s  t o  change to   ano the r  Liapunov  function W(x), 

given by G(V(x))  where  V(x) is t he  optimum Liapunov  function, i.e., a 

s o l u t i o n  of equat ion ( 4 . 1 5 ) .  I n   o r d e r   f o r  W(x) t o   r e t a i n   t h e   b a s i c  

na tu re  of a Liapunov  function, i t  w i l l  be r equ i r ed   t ha t  G(V) s a t i s f y   t h e  

fol lowing  condi t ions:  

1) G(V)> 0 i f  V > O  

2 )  G(0) = 0 

3 )  dG(V)/dV> 0 i f  V > O  

4 )   l i m  G(V) = 00 
v- 00 

5)  d2G(V)/dV2 e x i s t s  and i s  continuous. 

The e f f ec t   t ha t   t h i s   t r ans fo rma t ion   has  on the  Hamilton-Jacobi 

equation  can be observed by cons ide r ing   t he   t o t a l  time de r iva t ive   o f  

W(x). Again fi w i l l  be a funct ion  of   both x and u and  hence w i l l  be 

w r i t t e n  W(x,u) 
. 

. 
Now minimizing W(x,u) w i t h   r e s p e c t   t o  a l l  admissible   controls ,  

while remembering t h a t  V(x)  and  hence  G(V(x)) i s  no t  a funct ion  of  U, 

y ie   Ids  

P dG0 +(X, 
dV 

The minimum of   i (x ,u )   w i th   r e spec t   t o  u€U w i l l  be designated by wo(x), 

Then equat ion ( 5 . 2 )  becomes 

io (X) dG0 
dV ( 5 . 3 )  
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But, by assumption,  V(x) is a s o l u t i o n  of equat ion 

i " (x)  -L(x). Therefore   equat ion ( 5 . 3 )  becomes 

(4.15) and  hence 

(5.4) 

Since  dG(V)/dV is p o s i t i v e   f o r  V greater   than  zero,  G must be 

monotone inc reas ing   on   t he   i n t e rva l  (0,OO). Then accord ing   to   condi t ions  

1) and 2 )  above, G must map t h e   i n t e r v a l  IO,-) on to   t he   i n t e rva l  [O, 00) 

i n  a one-to-one  fashion.  Therefore G possesses  a unique  inverse  funct ion 

I on t h e   i n t e r v a l  [O,oo). Since  both  V(x)  and W(x) a r e   r e q u i r e d   t o  be 

p o s i t i v e   d e f i n i t e ,   t h i s  is the   on ly   reg ion   of   in te res t .   Therefore  

V(x) = I(W(x)) 

Then s u b s t i t u t i n g   f o r  V(x) in   equa t ion  ( 5 . 4 )  gives 

;"(x) = -L(X)dG(I(W(X))) 
dV 

i " ( x )  = -L(x)F(W(x)) 

For  the  case  of  t ime  optimal  control,   L(x) = 1, and  equation ( 5 . 7 )  reduces 

t o  

;"(x) = -F(W(x)) (5.8) 

By combining  the  results of th i s   s ec t ion   w i th   t he  theorems of 

s e c t i o n  4.3, the   fol lowing  opt imal i ty   theorem  resul ts .  

Theorem 5.1 I f   t h e r e   e x i s t s  a Liapunov  function, W(x), w i th  

cont inuous   second  par t ia l   der iva t ives ,   such   tha t  W (x)  = 

-L(x)F(W(x))  where F(W) = dG(I(W))/dV  and G s a t i s f i e s   t h e  

- 0  

conditions  given  above,  then  the  control,  uo, which  minimizes 

W(x,u), i s  an  opt imal   control .  
. 
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The f i r s t   s t e p   i n   t h e   p r o o f   o f   t h i s  theorem is to   obtain  the  Liapunov 

funct ion,  V(x),  which  corresponds t o  W(x). S u b s t i t u t i n g  W = G(V) i n t o  

t h e   d e f i n i t i o n  of F(W) y i e l d s  

F(G(V)) = dG(I(G(V)))/dV ( 5 . 3 3 )  

However I is  the  inverse   of  G and  hence  I(G(V)) = V, then  equat ion ( 5 . 3 3 )  

be comes 

F(G(V)) = dG(V)/dV ( 5 . 3 4 )  

By a n t i d i f f e r e n t i a t i o n  G(V) can be obtained from equat ion ( 5 . 3 4 ) .  By 

hypo thes i s   t h i s  G(V) must s a t i s fy   t he   cond i t ions   g iven  above. Hence 

V(x)  given by I(W) must be a Liapunov  function i f  W(x) is. Condition 5 )  

on G(V) a s s u r e s   t h a t   i f  W(x) has   cont inuous   second  par t ia l   der iva t ives  

t h a t  V(x) w i l l  a l so .  Thus t h e   f i r s t   p o r t i o n   o f  Theorem 4 . 1  has  been 

s a t i s f i e d .  

Next consider  V(x,u)  which may be obtained as 

(5.35) 

S ince   ne i the r  W(x) nor  V(x)  are  functions  of  uy  the same con t ro l  uo 

must  minimize  both  V(x,u)  and W(x,u) and  hence  equation  (5,35) becomes 

;"(x) - dV0 ;"(x) 
dW 

By hypothesis  io(,)  = -L(x)F(W(x))  and the re fo re  one ob ta ins  

But G(V) = W and  hence 

dV/dW [dG(V)/dV] = [dV/dW][dW/dV] 

= 1. 
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Therefore  equation  (5.36) becomes 

?(x) - -L(x) 

Hence V(x) s a t i s f i e s   t h e   c o n d i t i o n s   o f   t h e  Theorem 4.1  and uo must be 

an optimum control  which  completes  the  proof  of  the theorem.  For  the 

minimum time  problem, t h i s  theorem becomes 

Theorem 5.2 I f   t h e r e   e x i s t s  a Liapunov  function W(x), w i t h  

cont inuous   second  par t ia l   der iva t ives ,   such   tha t  Wo(x) = 

F(W(x)),  then uo is a time-optimal  control.  

. 

This  l a s t  theorem  embodies the  basic   concept   of   the  method presented by 

Nahi14 for   obtaining  t ime-opt imal   control  by the  use  of  the  Second 

Method. However, by the  development  presented  here,   greater  insight and 

informat ion   a re   ga ined   wi th   regard   to   the   func t ion  F. 

It should be noted   tha t   s ince   equat ion  (5.7) is  the  modified 

Hamil ton-Jacobi   equat ion  that   W(x)   does  not   sat isfy  the  adjoint   equat ion 

even  though  fio(x) = -L(x)F(W(x)).   This  fact   can  readily be v e r i f i e d  by 

examp le .  

One t ransformation,  G, which i s  of par t icu lar   impor tance   in   the  

next   sec t ion  is  

Then the   inverse  of G is given by 

Therefore  equation  (5.7) becomes 

For   the  t ime-opt imal   case,   one  obtains  

(5.10) 

(5.11) 

(5.12) 
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This   equat ion  plays  an  important   role   in   the  next   sect ion.  

5.3 Eigenvector Scalar Products 

I n   t h i s   s e c t i o n  a par t icu lar   c lass   o f   so lu t ions   o f   the   Hami l ton-  

Jacobi   equat ion is  developed.  Because  of  the manner i n  which  these 

s o l u t i o n s   a r e  formed, they are ca l led   e igenvec tor   sca la r   p roduct  

so lu t ions .   Fo r   t he   ma te r i a l   t o  be presented  in   the  remaining  port ion  of  

t h i s   chap te r  and the  next   chapter ,  two addi t ional   assumptions  are   added  to  

the  basic   opt imizat ion  problem  as   formulated  in   sect ion 2 . 3 .  Firs t ,  only 

t ime-opt imal   control  i s  considered,  i .e. ,   L(x) = 1. Second,  the 

eigenvalues   of   the   matr ix  A in   equat ion  (2 .2)  must be rea l ,   non-pos i t ive  

and d i s t i n c t  

In   the  preceding  sect ion,  i t  was shown t h a t  time opt imal   cont ro l  

could be obtained by f ind ing  a Liapunov  function,  V(x),  such  that  so(x) = 

-p(V(x)). The fol lowin& Lheorem, due t o  Malkin , e s t a b l i s h e s  a necessary 

and s u f f i c i e n t   c o n d i t i o n   f o r  V(x) = XV(x) for   uncont ro l led   l inear   sys tems.  

10 

Theorem 5.3 For  systems whose  laws of  motion  are of the  form 

2 = - Ax t h e r e   e x i s t  Liapunov  functions  such  that   +(x) = XV(x) i f  

and  only i f  = mlhl + m2X2 +...+ %& and  V(x) is  given by 

V(x) = ( q l ' x ) m l  (*2'x)m2 . e. (q" 'x)% 

where  the Xi's a re   the   e igenvalues   o f  A and qi i s  the  

eigenvector  of A' assoc ia t ed   w i th  X i .  

The reader  i s  r e fe r r ed   t o   Ma lk in l '   f o r  a proof of t he   necess i ty  

portion  of  the  above  theorem,  which i s  somewhat involved  and  not  of 

par t icu lar   impor tance   for   the   p resent   d i scuss ion .  The proof of the 

sufficiency  of  the  above  theorem is presented below, s i n c e  i t  i s  u s e f u l  
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i n   t he   fo l lowing  work, However, before   beginning  this   proof ,   consider   the 

f o 1 lowing lemma , 

Lemma 5.1 If q is  an  eigenvector of 4' and h is  the   a s soc ia t ed  

eigenvalue,  and i f  V(x) = q'x,  then 

i ( x )  - hV(X) 
0 

For V(x) - q'x V(x) is given by 
0 0 

V(x) - q'x = q'hx (5.13) 

But q is  an  eigenvector of A ' ,  hence 

A'q = hq  (5.14) 

O r ,  taking  the  transpose  of  both  sides  of  equation  (5.14),   one  obtains 

q ' h  = hq'  (5.15) 

and the  proof of t he  lemma i s  completed. 

Return ing   to   the   p roof  of the  theorem,  consider a Liapunov 

function  of  the form 

V(X> = (91'x)ml  (92'x)m2 . .o (q"'x)m" 

Now l e t   V i ( x )  = qi'x  and  then  equation  (5.16) becomes 

Now t a k i n g   t h e   t o t a l  time derivat ive  of   V(x) ,   one  obtains  

(5.16) 

(5.17) 

Thus completing  the  proof  of  the  theorem, 
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Since  V(x) 

consider  a Liapunov 

t u r n s   o u t   t o  be a function  of  V(x),  one is  l e d   t o  

function  of  the  form  of  equation (5.16) as a poss ib l e  

solution  of  the  Hamilton-Jacobi  or  modified  Hamilton-Jacobi  equation, The 

fol lowing  theorem  indicates   that   there  are, i n   f a c t ,   s o l u t i o n s   o f   t h i s  

form. 

Theorem 5.4 I f  q is  an eigenvector  of A' and h i s  the  

associated  e igenvalue,   then W(x) = (q 'x )2  i s  a so lu t ion   of   the  

modified  Hamilton-Jacobi  equation  (5.12), i.e., W (x)  = 

K1W(x) - K2im where - K 1  = 2h and K2 = 2 IJB'qll . 
- 0  

As a f i r s t   s t e p   i n   t h e   p r o o f ,   c o n s i d e r   t h e   f o l l o w i n g  lemma. 

Lemma 5.2 For  any  matrix p such   tha t  g = pp'  and  any  matrix 

B,  P'BB'P = IIg'p 11 Po 

Writ ing  out  P ' E ' g  i n   f u l l ,  one ob ta ins  

2 - 

-" P'BB'P - pp'BJ'pp' 

Now consider   the p ' E ' p  por t ion   o f   th i s   express ion .  i s  an  nxr  matrix, 

while p i s  an  nxl  column mat r ix   (vec tor ) .  Hence the  product  p ' g  i s  a 

1 x r matrix,  and - B'p an r x 1 matrix.   Therefore   the  product  p ' H ' p  

must be a 1 x 1 matr ix ,   or  a s c a l a r ,  whose value i s  11 g 'p l (  L. Therefore 

= IIB'P 

which  completes  the  proof  of  the lemma. 

is  not   requi red  t o  be non-singular.  

The next  step,   in  the  proof  of 

2 I I  P (5.18) 

I t  should be poin ted   ou t   tha t  

the  theorem, is  t o   r e w r i t e  W(x) 

i n  a new form. Since  q 'x = x'q,  then W(x) =I q'xq'x  can be w r i t t e n   a s  

W(x) = x'qq'x 

= X'QX (5.19) 
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where Q = qq'. It should be noted   tha t  Q i s  pos i t i ve   s emide f in i t e  and 

symmetric. Now t ak ing   t he   g rad ien t   o f  W(x), one ob ta ins  

W(x) = 2qx (5.20) 

By s u b s t i t u t i o n  W(x) f o r  V(x) i n  equat ion (4.5A), i 0 ( x )  is  given 

by 

(5.21) 

Subs t i t u t ing   equa t ion  (5.20) into  equation  (5.21)  and  expanding 

- BIW(xl)  , one ob ta ins  

(5.22) 

But q i s  an  eigenvector  of A' and  hence q'A = hq' ,  From the lemma above, 

Q'BB'Q IIg'S 1 1  Q- Therefore  equation  (5.22) becomes 
2 

o r  

i O ( x )  =I 2XW(X) - 2 IIlyqll I / = =  

Hence W(x) = (q 'x ) '   sa t i s f ies   equa t ion   (5 .12)  and the  proof  of  the 

(5.23) 

theorem is completed.   Solut ions  of   this   type  are   cal led  e igenvector  

s ca l a r   p roduc t   so lu t ions   s ince   t hey   a r e   s ca l a r   p roduc t s   o f   e igenvec to r s  

w i th   t he  s t a t e  vec tor .  

By the  use  of  equation  (5.10),  the  Liapunov  function,  V(x), 

which is  a solut ion  to   the  Hamil ton-Jacobi   equat ion  (4 .15)  i s  given by 

(5.24) 
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It can  be e a s i l y   v e r i f i e d  by d i r e c t   s u b s t i t u t i o n   t h a t   i o ( x )  = 1. The 

corresponding  opt imal   control  is  given by 

( 5 . 2 5 )  

The obvious  simplicity  of  the  form  of W(x) a s  compared t o  V(x) 

points   out   the   reason  for   the  use  of   the  modif ied  Hamil ton-Jacobi  

equation. However, V(x) is  a l so   impor t an t   s ince   su r f aces   o f   cons t an t  

V(x) a re   sur faces   o f   cons tan t   t ime.   This   po in t  is  d i scussed   fu r the r   i n  

the  next   sect ion,   which  is ,concerned  with  bounding  the optimum t r a n s i t i o n  

time. 

It should be po in ted   ou t   t ha t   t he   so lu t ions   ob ta ined  above  cannot 

be used   d i r ec t ly   s ince   t he  Liapunov  funct ions  are   only  semidefini te .  

However, in   the   next   chapter ,  a method of   employing  these  solut ions  to  

obta in   sub-opt imal   cont ro l ' i s   deve loped .   Before   p roceeding   to   the   next  

sec t ion ,  i t  is  perhaps  wise  to   consider  a p a r t i c u l a r  example  of  the 

solutions  presented  above. 

Example 5.1 The equation  of  motion  of  the  system  are 

(5.26) 

It is  des i r ed   t o   f i nd   t he   e igenvec to r   s ca l a r   p roduc t   so lu t ions   fo r   t h i s  

problem  and t o  show tha t   they   sa t i s fy   the   modi f ied   Hami l ton-Jacobi  

equat ion,  The corresponding  solut ions  of   the   Hamil ton-Jacobi   equat ion 

a r e   a l s o   t o  be found  and  verified.  

By standard  methods  the  eigenvalues are found t o  be -1, -2 

with  the  corresponding  (unnormalized)  eigenvectors of 4' being (2,l) and 
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(1,l). It should be noted   tha t  any o the r  set of e igenvectors  of A' could 

have  been  chosen s ince   t he   r e su l t i ng   op t ima l   con t ro l  and  Liapunov  function 

i s  unchanged.  The  above set  was chosen f o r  i t s  computational  convenience. 

There are two so lu t ions  of the  modified  Hamilton-Jacobi  equation 

which  can be obta ined  by the  above method, cor responding   to   the  two 

eigenvectors, ,  

F i r s t ,   f o r   t he   e igenva lue  -1, one ob ta ins  

Wl(X) - (q1'x)2 = (2x1 + x2)2 (5.27) 

and Wl0(x) is given by 

;;(x) =I -2W1(X) - 24" 

The corresponding  solut ion of the  Hamilton-Jacobi  equation i s  

vl(x) = In(  12x1 + x21 + 1) (5.28) 

while   the optimum cont ro l   as   g iven  by equat ion (5.25) is 

(5,29) 

The t o t a l  t i m e  de r iva t ive  of VI(x) i s  then  given by 

Now s u b s t i t u t i n g  from equat ion (5.26) one ob ta ins  

If u0(x) as given by equat ion (5.29) i s  now s u b s t i t u t e d   f o r  u, i l ( x , u )  

becomes Vlo(x) 
(2x1 + x21 -(2x1 + x2) - (2x1 + x21 

12x1 + X2lZ + 12x1 + x21  12x1 + x21 
1- -1 

4 3  



Hence Vl(x)   sa t i s f ies   the   Hami l ton-Jacobi   equa t ions  as predicted.  Then 

for   the  second  e igenvalue,   one  obtains  

W,(x) = (q2'x)2 = (x1  + x212 (5.30) 

(5.31) 

Again i t  can be r ead i ly   ve r i f i ed   t ha t   V2(x )   s a t i s f i e s   t he   Hami l ton - Jacob i  

equation. 

5.4 Bounds on Trans i t i on  Time . 
I n   s e c t i o n  4.2, i t  was b r i e f l y  mentioned  that   i f  V(x) = -L(x) 

then  surfaces   of   constant   V(x)  become sur faces   o f   cons tan t   cos t .   This  

point   perhaps  needs  fur ther   e laborat ion.   In   the  case  of  time opt imal  

cont ro l ,   v (x)  = -1, and  hence  integrat ing  with  respect   to  t from to 
0 

t o  tl, one ob ta ins  

V(X1) - V(x0) = to - t l  (5.32) 

I f   t h e   t e r m i n a l   s t a t e  i s  t aken   t o  be the  origin,   then  V(xl) = 0, and 

t l  - to = V(x0) 

Thus the   va lue   o f   t he   L iapunov   func t ion   a t   t he   i n i t i a l   s t a t e   o f   t he   sys t em 

i s  e q u a l   t o   t h e   t r a n s i t i o n  time. I f  a Liapunov  function  Vo(x)  has  been 

found  such  that  Voo(x) = -1, then Vo(xo) is  equa l   t o   t he  minimum t r a n s i t i o n  

time from  xo to   t he   o r ig in .   Le t  So be the   su r f ace  composed of a l l   p o i n t s  

x such   tha t  Vo(x) = T where  Vo(x) is  the  solution  of  the  Hamilton-Jacobi 

equation-the optimum Liapunov  function. Then So i s  the  set  of a l l  

po in t s  from  which it  is  p o s s i b l e   t o   r e a c h   t h e   o r i g i n   i n  a t r a n s i t i o n  time 

To by the  use  of  t ime  optimal  control.   This  surface  must be smooth  and 

. 
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enclose   the   o r ig in .   F igure  5.1 shows a two dimensional  example  where 

the   su r f ace  So has become the   c losed   curve   des igna ted  by So. Such a 

su r face  w i l l  be c a l l e d  an isochrone. The problem  of f ind ing   op t imal  

c o n t r o l  is a c t u a l l y  a problem  of   f inding  the  equat ion  for   the  isochrone,  

o r  V(x). 

Since i t  is  normally  impossible   to   obtain  the exact s o l u t i o n  of 

the  Hamilton-Jacobi  equation, it is  necessary  to   approximate  the  solut ion.  

I f   s u c h  an  approximate  solution,  Va(x), is found,  then l e t  S1 be the  

su r face  composed of a l l  po in t s  x such  that   Va(x)  = To, i .e . ,   the   set  o f  

a l l   p o i n t s  from  which  the  origin  can be reached  in  To seconds by the  use 

of  sub-optimal  control.  The su r face  S g  must  be w i t h i n   o r   a t  most tangent 

t o  So as  shown in   F igu re  5.1. 

One method for   judging   the   qua l i ty   o f  a sub-opt imal   control  i s  

now obvious. The  more nea r ly   t he   su r f ace .S1   co inc ides   w i th   t he   su r f ace  

So, the   be t te r   the   sub-opt imal   cont ro l .  However, s ince   t he   su r f ace  So 

is genera l ly   no t  known, such a method  of judging   the   qua l i ty   o f   the  

approximation is rather  academic.  Some o the r  method is the re fo re  needed. 

One such method is t o   f i n d   a n o t h e r   s u r f a c e  S2 which i s  e n t i r e l y  

o u t s i d e   o r   a t  most tangent  t o  So, as shown in   F igu re  5.1. I f  such a 

surface  could be found i n  a r e l a t i v e l y   e a s y  and  s t ra ight-forward manner) 

t h e   q u a l i t y  of  an  approximation  could be determined  in   the  fol lowing 

manner. If SI and S2 were close,   then S1 must be a good approximation, 

s i n c e  S l  must be a t  l e a s t  as c l o s e   t o  So as  it  is t o  S 2 .  However, i f  

SI and S2 were f a r   a p a r t ,  no conclusion  could be reached  regarding  the 

qua l i t y   o f   t he   con t ro l   s ince   t he re  would be no  knowledge w i t h   r e s p e c t   t o  

t he   r e l a t ion   o f  SI and So, This   s i t ua t ion   shou ld  be compared wi th   t he  
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FIGURE 5.1 TYPICAL ISOCHRONES 
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basic  concept  of  the Second Method where a f a i l u r e   t o   c o n s t r u c t  a 

Liapunov  funct ion  general ly   yields  no conc re t e   r e su l t s   w i th   r e spec t   t o  

s t a b i l i t y .  

It should be noted   tha t   the   sur face  S2 does, i n   g e n e r a l ,   n o t  

co r re spond   t o   any   phys i ca l   con t ro l   s i t ua t ion .   I f   t he re   d id   ex i s t   an  

admissible  control  which  would  take  the  system from S 2  t o   t h e   o r i g i n   i n  

To seconds ,   th i s  would c o n t r a d i c t   t h e   a s s u p t i o n   t h a t  So was optimal. 

However, t he re  may be po in t s  on S2 which  correspond  to   points  on So, and 

hence  from  these  points  the  system  can be r e t u r n e d   t o   t h e   o r i g i n   i n  To 

seconds . 
The eigenvector   scalar   product   solut ions,   as   developed  in   the 

preceding  sect ion,   provide  an  unusual ly   s imple method f o r   o b t a i n i n g  a 

S2-type  surface.   Although  the  surface  generated  does  not  uniformly 

approximate So from the   ou ts ide ,  i t  i s  t angen t   t o  So a t   s e v e r a l   p o i n t s ,  

a s  is pointed  out  la ter .  

Consider   for  a moment t h e   i n t e r p r e t a t i o n   t h a t  one may g ive   t o  

Liapunov  functions  which  are  given by equat ion ( 5 . 2 4 )  

( 5 . 2 4 )  

I n   t h i s   c a s e  V(xl) i s  z e r o   i f  and o n l y   i f  q'x' i s  zero .  Thus the   va lue  

of V(xo) does  not  correspond  to  the minimum t r a n s i t i o n   t i m e  from xo to t he  

o r i g i n   b u t   r a t h e r  from xo to   the   hyperp lane   def ined  by  q'x: = 0.  S ince   the  

su r face  V(x) = To corresponds   to   the   sur face  1q'x I = K, a constant,  which 

i s  two hyperplanes,  V(x) = To i s  a c t u a l l y  two hyperplanes  symmetrically 

placed  about q'x = 0. See  Figure 5.2 f o r  a two dimensional  example of 

these  V(x) equals  a cons tan t   sur faces  and t y p i c a l   t r a j e c t o r i e s   o f   t h e  

system. 
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FIGURE 5.2 SURFACES OF CONSTANT V(x) FOR 
EIGENVECTOR SCALAR PRODUCT 
SOLUTIONS 
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Since   t he   o r ig in  i s  one po in t  on the  hyperplane  V(x) = 0, then 

V(xo)  must be e q u a l   t o   o r  less than  the minimum t r a n s i t i o n  time from xo 

t o   t h e   o r i g i n ,   I f  it were grea te r ,   then   there  would e x i s t  a c o n t r o l  

which  would t r ans fe r   t he   sys t em  to   t he   hype rp lane   i n  a time less than 

V(xo),  which con t r ad ic t s   t he   op t ima l i ty   o f   t he  Liapunov  function  given by 

equat ion (5.24). Therefore  the  surface  (hyperplanes)  V(x) = To must be 

e n t i r e l y   o u t s i d e   o r  a t  most   tangent   to   the So surface.  

It is  very   s imple   to  show t h a t   t h e  V(x) = To su r face  must be 

t angen t   t o  So i n  two places.   Since  the  system i s  con t ro l l ab le ,   t he re  must 

be two points   (one on each  hyperplane) from  which  the  origin is reached 

i n  To seconds as a special   case  of   reaching  the  hyperplane  q 'x  - 0. See 

po in t s  x' and  xB in   F igu re  5.2. But t hese   po in t s  must be on So; otherwise 

they would con t r ad ic t   t he   op t ima l i ty   o f  So. Hence t h e r e   a r e  two po in t s  

a t  which  the  V(x) = To su r face  is  tangent  to So. 

Since  the n e igenvalues   a re   d i s t inc t ,   the   e igenvec tors   a re  

linearly  independent  and  hence  the n surfaces   (hyperplanes)   are   non-coplanar  

(should  probably be non-cohyperplanar).  Therefore  the  boundary of the  

s e t  of  points  for  which Vi(x) f To, i - 1,2,...,n i s  a c losed   sur face ,  

See  Figure 5.3 where  the  cross-hatched  area i s  such a s e t .  However every 

po in t  on t h i s   s u r f a c e  must be o u t s i d e   o r  on the  So sur face ,   s ince   each  

boundary po in t  is on some sur face   Vi (x)  = To, and by the  argument  above, 

each  such  point i s  o u t s i d e   o r  on So, T h e r e f o r e   t h i s   s u r f a c e  must be a 

s2  sur face .  

The f a c t   t h a t   t h e r e  are 2n po in t s  a t  which  the  above S2 su r face  

is tangent  t o  the S2 surface  can be a rgued   in   the   fo l lowing  manner. By 

the  argument  presented  above,  the  surface V1(x) = To must be t angen t   t o  
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FIGURE 5.3 A TYPICAL S2 SURFACE  BOUNDING 
THE OPTIMAL So SURFACE 
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So a t  two points .   Since  f rom  these  points  i t  is p o s s i b l e   t o   r e a c h   t h e  

o r i g i n   i n  To seconds, i t  is a l s o   p o s s i b l e   t o   r e a c h  a l l  of   the  other  

Vi(x) = 0 s u r f a c e s   i n  To seconds  from  these  points.  Therefore  these 

po in t s  must be on both  the S 2  and the  So sur faces .  By a similar argument, 

i t  can be concluded   tha t   there  are 2n points   which  are  common t o  S2 and 

So. See  Figure 5.3 which shows a t y p i c a l  S2 sur face   genera ted  by t h i s  

method. 

Thus by the   use   o f   the   e igenvec tor   sca la r   p roduct   so lu t ions  i t  

i s  poss ib l e  t o  ob ta in  a r e l a t i v e l y  good S 2  s u r f a c e   i n  an  unusually s i m p l e  

manner. The inab i l i t y   t o   f i nd   such   su r f aces   has  been a s e r i o u s   d i f f i c u l t y  

in  designing  approximately  t ime-optimal  systems  in  the  past .   Without  such 

S2 sur faces ,  i t  i s  impossible   to   judge  the  qual i ty   of  a sub-optimal  system 

wi thou t   ac tua l ly   ob ta in ing   t he   op t ima l   so lu t ion .  

51 



Chapter 6 

SUB-OPTIMAL CONTROL FOR  NON-SINGULAR B MATRIX 

6.1 In t roduc t ion  

I n  th i s   chapter ,  a method for   designing  sub-opt imal   control  

systems is developed,   based  on  the  e igenvector   scalar   product   solut ions 

presented  in   the  previous  chapter .  The cont ro l   mat r ix ,  E ,  is assumed t o  

be non-s ingular   for   the  work p r6sen ted   i n   t h i s   chap te r .  The method i s  

developed f i r s t   f o r   s econd-o rde r   sys t ems   i n   o rde r  t o  be a b l e   t o   c a r r y  

out  a geometr ic   representa t ion   and   in te rpre ta t ion   o f   the  method. A 

second-order  example  completes  the  presentation. 

Followin&  the  development  of  the  sub-optimal  control method 

for  second-order  systems, a gene ra l i za t ion   t o   n - th   o rde r   sys t ems  is 

made. A t h i rd -o rde r  example i s  u s e d   t o   i l l u s t r a t e   t h e   g e n e r a l i z a t i o n .  

The chapter  concludes  with a br ie f   d i scuss ion   of   the  method  and i t s  

appl ica t ion .  

It  i s  pe rhaps   o f   va lue   t o   s t a t e   t he   bas i c   op t imiza t ion  problem 

t h a t  i s  considered  in   this   chapter .   For   l inear   systems whose laws of 

motion  are   descr ibed by 

ii = Ax + g u  

where the  e igenvalues   of  A a r e   r e a l ,   d i s t i n c t  and non-posi t ive and the 

mat r ix  is non-singular ,  i t  is desired  to   f ind  t ime-opt imal ,   c losed-loop 

cont ro l   cor responding   to  a t r a n s i t i o n  from xo to   t he   o r ig in .  The con t ro l  

region, U, i s  t h e   s e t  of a l l   c o n t r o l   v e c t o r s ,  u, such   t ha t  llul12 5 1, 
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6,2 Sub-optimal  Control  of  Second-Order  Systems 

I n   p h i s   s e c t i o n ,  a method of  sub-optimal  control  of  second- 

order   sys tems  wi th   non-s ingular   cont ro l  matrices is developed.  Before 

beginning  this  development, it is  necessa ry   t o   mod i fy   s l i gh t ly   t he  

e igenvec tor   sca la r   p roduct   so lu t ion   of   the   p rev ious   chapter .  

This   modif icat ion  involves  a genera l iza t ion   of   the  bound on the  

norm of   the  control   vector  from u n i t y   t o  some unspec i f ied   cons tan t ,  p. 

I f   s u c h  a change i s  made e i t h e r  by t ransforming   the   cont ro l   vec tor   o r  

by r epea t ing   t he  work of  Chapter 5, t h e  Liapunov  function,  V(x), as 

given by equat ion ( 5 . 2 4 )  becomes 

and  the  corresponding  optimal  control i s  

As would be expected,   for  a f i x e d   i n i t i a l   c o n d i t i o n ,  X , i nc reas ing  

causes V(xo) to   dec rease ,   i oe . ,   t he   t r ans i t i on   t ime   dec reases   w i th  

increas ing   cont ro l   e f for t .   S ince   the   numer ica l   va lue  of V(x) i s  

dependent on both   the   sys tem's   s ta te  and on the  norm of the   cont ro l  

vector,  V(x) w i l l  be w r i t t e n  as V(x,p) t o   i n d i c a t e   t h i s   r e l a t i o n .  

S imi l a r ly ,  u w i l l  be w r i t t e n  as u(x,p). 

0 

P 

A general   second-order  system  with real, non-posit ive  and 

d i s t inc t   e igenva lues ,  and A.2 i s  cons ide red   i n   t h i s   s ec t ion .   Fo r   each  

eigenvalue,   there  i s  an  e igenvector ,   designated by q1 and  q2  respectively. 

Assoc ia ted   wi th   the  two e igenvec tors   a re  two Liapunov  functions  given by 
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equat ion (6.1), V,(x,p)  and  V2(xJp),  and the i r   cor responding   op t imal  

controls   a l (x ,p)   and  u2(x . 
For some po in t   i n   t he   s t a t e   space ,   xoJ   t he   con t ro l   g iven  

u 1 (x,?) t ransfers   the   sys tem from x' t o  some point ,  x 1 , on the   su r f ace  

Vl(x,p) = 0 i n  minimum time. Typica l   po in ts  and the  corresponding 

op t ima l   t r a j ec to ry   a r e  shown in   F igu re  6.1, In  the  case  of  second-order 

systems,   surfaces   of  V(x) equals  a constant  become l ines .   That   ul(x 

is, in   fac t ,   cons tan t   dur ing   th i s   t rans i t ion   can  be shown in   the   fo l lowing  

manner. 

e) 

For a given  e igenvector ,  q1  B I q 1  i n   equa t ion  ( 6 . 2 )  is  a 
9 -  

constant  vector  while  q1,x i s  a s c a l a r ,  Hence uI(x,,o)  must be a vec tor  

P a r a l l e l  to - B'q'; i t s  direct ion  being  determined by the   s ign  of t he  

sca l a r   quan t i ty   q l ' x .   S ince   t he   x i ( t ) ' s   a r e   con t inuous   func t ions  of 

time, i t  i s  necessary   for  ql'x t o  be zero  before  i t  can  change  sign. 

But i f   q l ' x  i s  zero,  then  Vl(x,g) i s  also  zero.   Therefore   the  s ign of 

q 'x  cannot  change  during  the  transit ion  from xo t o  XI. Hence u ~ ( x , P )  

must be a constant   vector ,  whose norm i s  equa l   t o  g and whose d i r e c t i o n  

i s  given by B 'q lq l 'x .   F igure  6 . 2  shows 8 t yp ica l   con t ro l   vec to r ,   u l (x ,p ) .  

1 

Consider now another   cons tan t   cont ro l   vec tor ,   uJ  as shown i n  

Figure 6.2 which i s  equal   to   the  addi t ion  of   ul(x,e)   and  any  arbi t rary 

constant   vector  r perpendicular  to ul(x,p).   Therefore 

u = u'-(x,p) + r 
where r is  any   cons tan t   vec tor   such   tha t   r 'u l (xJe)  = 0. The t r a n s i t i o n  

t imefrom  the  point  xG to   t he   l i ne   V l (x ,p )  = 0 i s  independent  of r ;  t h i s  
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f a c t   c a n  be shown i n   t he   fo l lowing  manner. 

Consider  the  Liapunov  function  Yl(x,p) as given by equat ion 

(6.1). Now computing i ts  t o t a l   t i m e   d e r i v a t i v e ,  one ob ta ins  

Subs t i t u t ing   equa t ion  ( 6 . 3 )  f o r  u gives  

However, r is  perpendicular   to   ul(x,p)  and by the  argument  above u 1 (x,g) 

i s  pa ra l l e l   t o   p ' q .   The re fo re  r must be perpendicular  t o  g ' q  and  the 

sca la r   p roduct  of r and  B'q  must be zero,  i.e.,  qlBr = 0. Hence the 

third  term  in   the  numerator   of   equat ion  (6 .5)  must be zero.  Therefore 

By d i r e c t   s u b s t i t u r f o n  of u (x,?) as  given by equation  (6.2),  i t  can be 

r e a d i l y   v e r i f i e d   t h a t   V l ( x , f )  = -1. Since  nei ther   Vl(x,p)   nor   Vl(x,g)  

a r e   func t ions  of r i t  is  obv ious   t ha t   t he   t r ans i t i on  t i m e  from  xo t o  the  

1 

l i n e  Vl(x,p) = 0 is independent of r. 

From the  argument  above,  one may conclude   tha t   for  any con t ro l  

u on ly   t ha t   po r t ion  of u which i s  p a r a l l e l   t o   u l ( x y e )  i s  i roportant   in  

de t e rmin ing   t he   t r ans i t i on  t i m e  from  an i n i t i a l   p o i n t   t o   t h e   l i n e  

V l < X , @  = 0. One  may draw a similar conclus ion   for  u2  and V2. 
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For some i n i t i a l  s tate,  xo, let  the  magnitude of t h e  optimum 

control  vectors,  ul(xo,pl)  and u 2 0  ( x  ,e2), be  chosen  such  that  

V1(xo,f31) = Vz(xo,e2) - T. Therefore   the   cont ro l   vec tor  ui(xO,pi) 

t ransfers   the  system  f rom xo t o   t h e   l i n e  Vi = 0 i n  T seconds. Now 

consider  a vec to r  u such   t ha t   t he   po r t ion  of u which is  p a r a l l e l   t o  u 

i s  equal   to   ui(xO,ei) .   See  Figure 6 . 3  f o r  a g raph ica l   r ep resen ta t ion   o f  

t h i s   s i t u a t i o n .  The magnitude,ei,  of  the  portion  of u which is p a r a l l e l  

t o  u may be obta ined  from the   sca la r   p roduct   o f  u and a un i t   vec to r  

p a r a l l e  1 t o  u . Hence 

i 

eE 

i 

i 

pi = u ' u i ( x 0 , l )  ( 6 . 7 )  

Since  only  the  port ion  of  u which i s  pa ra l l e l  t o  ui  has  any 

e f f e c t  on the  t i m e  necessary t o  t ransfer   the  system  f rom xo t o  Vi = 0, 

u must t ransfer   the   sys tem from x0 t o   bo th  V I  c 0 and v2 = 0 i n   t h e  Same 

time. But V1 = V2 P 0 can  only  occur a t   t h e   o r i g i n ,  hence u must 

t ransfer   the  system  f rom xo t o   t h e   o r i g i n   i n  V1(xo,Q1) = V2(xote2) = T 

seconds . 
Since  set t ing  V1(xo,el)  = V2(x0,e2)   spec i f ies   on ly   the   re la t ive  

magnitude  of f$ i n  terms Of e2, the re  i s  a n   i n f i n i t e  number of   vectors  

which s a t i s f y   t h i s   c o n d i t i o n .  However, only  one  of  these  vectors  has 

uni t   l ength ,   This  is  then   an   admiss ib l e   con t ro l   wh ich   t r ans fe r s   t he  

system from xo t o   t h e   o r i g i n   i n  a f i n i t e  t i m e ,  V1(xo,fi).  This is, i n  

general ,   not   the  minimum time,  but i t  is  an  acceptable  compromise  between 

system  complexity  and  speed of response,   as i s  shown l a t e r .  

S e v e r a l   s i g n i f i c a n t   a s p e c t s   o f   t h i s   s u b - o p t i m a l   c o n t r o l  method 

should be noted .   F i r s t ,   once   the   cont ro l  i s  obtained, it i s  cons tan t  

for   the   en t i re   t rans i t ion   t ime.   For  small d is turbances ,   the   cont ro l  
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var ies   on ly   s l igh t ly ,   which  i s  he lp fu l   i n   mechan iz ing   t he   con t ro l l e r .  

The con t ro l   vec to r   does   no t   r equ i r e   r ap id   va r i a t ions   a f t e r  i t s  i n i t i a l  

s e t t i n g  and  hence  only a minimum of   reca lcu la t ion   of   the   cont ro l   vec tor  

i s  necessa ry   du r ing   t he   t r ans i t i on  time. This   should  s implify  the 

ins t rumenta t ion   of   the   cont ro l le r .  

Second, by the   use   o f   th i s  method t h e   t r a n s i t i o n  time from  any 

poin t  t o  the   o r ig in   can  be eas i ly   ob ta ined .   This  may be done by f i r s t  

s e t t i n g   t h e  norm of   the   cont ro l   vec tor   equa l   to   un i ty   and   then   so lv ing  

V 1 ( x O , p l )  = V2(x0,@) = T f o r  T, which i s  t h e   d e s i r e d   t r a n s i t i o n  time. 

Isochrones  can  be  found by choosing a va lue   o f  T and f ind ing   t he  set  of 

a l l  po in t s  x such   t ha t  V1(x,p1) = V2(x,(3) = T and Ilull = 1. 

An i n t e r e s t i n g   a s p e c t  of such  isochrones i s  t h a t   f o r  a given T, 

they are quadrat ic   in   terms  of   x1  and  x2.   This   fact  may  be u s e f u l   i n  

implementat ion  of   the  sub-opt imal   control  method. 

This  method a l s o  makes it p o s s i b l e   t o   o b t a i n   e a s i l y  and 

d i r e c t l y   t h e   a c t u a l   t r a j e c t o r y  of  the  system  from  xo  to  the  origin. 

This  can be done in   the   fo l lowing  manner. A f t e r   f i n d i n g   t h e   t r a n s i t i o n  

time, To, as   descr ibed  above,  choose  any  time T < T o ;  then   so lve   for   the  

po in t  x such   t ha t  V1(x,el) = V2(x,&,) = T w i t h &  and fi as  given  above. 

This  i s  the   s ta te   o f   the   sys tem a t  T seconds  before   reaching  the  or igin,  

o r  To - T s e c o n d s   a f t e r   l e a v i n g   t h e   i n i t i a l   s t a t e .   T h i s   a l l o w s  one t o  

obta in   the   pos i t ion   o f   the   sys tem  a t   any   t ime  dur ing   the   t rans i t ion   o f  

t he   o r ig in   w i th  no  knowledge of   any  previous  s ta te ,   thus   e l iminat ing  any 

accumulation  of  error.  The  work involved i s  s t r i c t l y  of a n   a l g e b r a i c  

na tu re ;  i t  i s  not   necessary  to   solve  any  different ia l   equat ion.   Both  of  

60 



t h e s e   l a s t  two aspec ts   o f   the  method a id   one   in   eva lua t ing   whether   the  

performance  of  the  sub-optimal  system is  s a t i s f a c t o r y .  

One f u r t h e r  aspect o f   t h i s  method should be mentioned  because 

of i t s  impor tance   re la t ive   to   the   implementa t ion   of   the  method. The 

s imul taneous   so lu t ion   of   the   equat ions  V1(xOIP1) = V2(xO,&) and 

Ilull = 1 is an  a lgebraic   manipulat ion,   a l though it i s  n o t   t r i v i a l .  

This  should be c o n t r a s t e d   t o  many of   the  present ly   advocated  methods  for  

which it  is  necessary  to   solve  s imultaneously  the  usual   nonl inear  

d i f f e r e n t i a l   e q u a t i o n s  of t he  two point  boundary  value  nature.  The 

computational  advantage is  obvious  from a hardware  standpoint.  Since 

these  computat ions  are   a lgebraic ,  i t  i s  p o s s i b l e   t o  carrty them out 

continuously on  an  analog  computer t o  create   cont inuous  control .  

Before  consider ing a numerical  example t o   i l l u s t r a t e   t h e  method, 

i t  i s  perhaps  of   value  to   out l ine  the  complete  method for   re fe rence .  

1) Obtain  the  eigenvalues  and  eigenvectors  of  the  matrix A'.  

2)  Obtain  the two Liapunov  functions  as  given by equat ion 
( 6 . 1 ) ,  V1(x,e) and  V2(xre),  and  their  corresponding 
opt imal   controls ,   u l (x ,p)   and  u2(x,p) .  

3 )  For a given  point ,  xo, so lve   t he   r e l a t ions  pi = u'ui(xo,l)  
t o   o b t a i n   u 1  and u2 in  terms  of  and p2. 

4 )  Solve V1(xO,pl) =I V2(x0,p2)  and Ilull = 1 simultaneously 
t o   o b t a i n e l  and p2. 

5)  By the   u se   o f   t he   r e l a t ions   ob ta ined   i n   s t ep   t h ree ,   f i nd  
u, the  desired  sub-opt imal   control .  

A method  of  mechanizing  the l as t  t h r e e  steps of   th i s   p rocedure  by the  

use  of a d i g i t a l   o r   a n a l o g  computer t o   c r e a t e  a closed-loop  system i s  

shown schemat i ca l ly   i n   F igu re  6 . 4 .  Two points   should be emphasized 

again.  F i r s t ,  once  the  control  is  determined, i t  rema ins   r e l a t ive ly  
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constant .  Second, the  operat ions  required  of   the  computer  are s t r i c t l y  

a lgeb ra i c .  It should a l s o  be noted  that   a l though  the  procedure is  

g iven   i n  a step-by-step  fashion,   the   control   can be computed continuously 

by the  use of analog  computer. 

Example 6 , l   I n   o r d e r   t o   i l l u s t r a t e   t h e  method of  sub-optimal 

control  developed  above,  consider  the  following  system 

It is  d e s i r e d   t o   t r a n s f e r   t h e   s y s t e m  from the   po in t  xo = 

t o   t h e   o r i g i n   w i t h  u = 1. 

By s tandard  methods  the  e igenvalues   are   found  to  be -1 and -2 

wi th   the   cor responding   e igenvec tors   o f  A' being (2,l) and (1,l). The 

two Liapunov  functions as given by equat ion (6.1) are  

Vl(X,P) - In ( 12x1 + x21 
2 P  + 1) 

The  corresponc ding  opt imal   controls  as given by equat ion ( 

(6.11) 

6.2) are 

(6.10) 

(6.12) 

(6.13) 
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This   completes   s teps   one and  two i n  the procedure  out l ined  above.  

Now f o r  xo = (2, l), ul(xo, 1) and  u2(xo, 1) become 

u q x o ,  1) = ( -1 ,O)  (6.14) 

U2(XO, 1) = (-2/&, -2/& ) (6.15) 

Us ing   t he   r e l a t ion  p i  = upui(xO, l), one   ob ta ins  

p2 = -2u1/& -u2/& 

Then s o l v i n g   f o r   u 1  and  u2 i n  terms of  p1 and p2 y i e l d s  

u2 = +2p1 - & p2 

Now s e t t i n g  IIuII = 1, one  obtains  2 

(6.16) 

(6.17) 

By solving  equations  (6.16) and  (6.17)  simultaneously, it i s  poss ib l e  

t o   o b t a i n  p 1  and p2.  If t h i s  i s  done the   so lu t ion   ob ta ined  is 

p1  0.645 
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Therefore a c o n t r o l   v e c t o r  u = (-0.645,+0.763)  transfers  the  system 

from the   po in t  x0 = (2,l) t o   t h e   o r i g i n   i n  V1(xo, pl) = 1.58  seconds. 

6 .3   Genera l iza t ion  

I n  the   p rev ious   sec t ion  a sub-optimal method  was developed  for  

second-order  systems. A g e n e r a l i z a t i o n   o f   t h i s  method to   n - th   o rde r  

systems i s  p r e s e n t e d   i n   t h i s   s e c t i o n .   S i n c e   a l l   o f   t h e   p r o o f s  and 

arguments   car ry   over   d i rec t ly   to   the   n - th   o rder   case ,   on ly   the   conclu-  

s ions   a r e   p re sen ted   he re .  

In   t he   n - th   o rde r   ca se ,   t he re   a r e  n r e a l  and d i s t inc t   e igenva lues  

XI, h2, . . ., X, and hence n l inear ly   independent   e igenvectors  q 1 2  , q , . . ., 
qn.   Associated  with  each  e igenvector  i s  a Liapunov  function  given by 

equat ion  (6.1) V1(x, p), V2(x,p), . . ., Vn(x,p)  and their   corresponding 

op t ima l   con t ro l s  ul(x,p) ,  u2(x,p), . . ., un(x, p) . As before ,   for  some 

p o i n t   i n   t h e   s t a t e   s p a c e ,  xo, the   cont ra1   g iven  by ui(x,p) t r a n s f e r s   t h e  

system  from  xo t o  some poin t ,  XI, on the  hyperplane V1(x,p) - 0 i n  

minimum time. Again  the  control  ui(x,  p) i s  c o n s t a n t   d u r i n g   t h e   e n t i r e  

t r a n s i t i o n  time. 

By an  argument i d e n t i c a l   t o   t h a t   p r e s e n t e d   i n   t h e   p r e v i o u s  

sec t ion ,  i t  can  be shown t h a t   f o r  any c o n t r o l  u on ly   t ha t   po r t ion   o f  u 

which is p a r a l l e l   t o  ul(x,p) a f f e c t s   t h e   t r a n s i t i o n  t i m e  from  any i n i t i a l  

po in t   to   the   hyperp lane  Vi(x,p)  = 0. 

I f   f o r  some i n i t i a l   s t a t e  xo a c o n t r o l   v e c t o r  u i s  chosen  such 

t h a t  V1(xo,pl) = V2(xo,p2) = . . . = Vn(xo,pn) where p = u'ui(x, l), then 

t h i s   c o n t r o l  must t r ans fe r   t he   sys t em t o  t h e   o r i g i n   i n  V1(xo,p) seconds. 
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Since   there  are only   n -1   equat ions   in   the  n unknowns, (31, ~ 2 , . . . ,  pn, 
t h e r e  is  a n   i n f i n i t e  se t  o f   con t ro l   vec to r s   wh ich   s a t i s fy   t hese   equa t ions .  

From t h i s  set, t h e r e  is  only  one  vector whose norm is  equa l   t o   un i ty .  

This  i s  an  admissible  control  which  transfers  the  system  from  any  point 

x t o   t h e   o r i g i n   i n  a f in i t e ,   a l t hough   u sua l ly   no t  minimum, time. 0 

Then the   p rocedure   for   ob ta in ing  a sub-optimal  control  can be 

s t a t ed   i n   t he   fo l lowing   s t eps :  

1) Obtain  the  e igenvalues   and  e igenvectors   of   the   matr ix  A'.  

2 )  Obtain  the  Liapunov  functions  as  given by equation  (6.1),  
Vl(xoe)  V2(xpp), ..o, Vn(xye)   and  their   corresponding 
opt imal   controls ,   u l (x ,e) ,   u2(x,p) ,  , . ., un(x,e). 

3 )  For a given  Point,  Xo, so lve   t he   r e l a t ions  pi = u'u i o  (x  ,1) 
t o   o b t a i n  ui in   terms  of   the pi. 

4 )  Solve  vl(xo,pl) = v2(xo,p2) - . . = vn(x0,pn)  and II ull = 1 
s imul t aneous ly   t o   ob ta in  el, p2, ..., pl. 

5 )  By the   use   o f   the   re la t ions   ob ta ined   in   s tep   th ree ,   f ind  ut 
the   desired  sub-opt imal   control .  

A s  before  the l as t  th ree   s t eps   i n   t h i s   p rocedure   can  be mechanized by the  

use  of a d i g i t a l   o r   a n a l o g  computer i n   o r d e r   t o   c r e a t e  a closed-loop 

system, 

A l l  of t h e   f e a t u r e s   o f   t h i s  method  which  were  pointed  out  for 

second-order   systems  carry  over   direct ly   for   n- th   order   systems.  

Example 6.2 A s  a n   i l l u s t r a t i o n   o f   t h e  above  procedure,  consider 

the   th i rd-order   sys tem shown in   F igu re  6.5.  The equations  of 

motion may be w r i t t e n   a s  
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I 
s + 2  

A 

FIGURE 6.5 THIRD ORDER EXAMPLE FOR 
SUB-OPTIMAL CONTROL  WITH 
NON-SINGULAR CONTROL 
MATR I X 
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It is des i r ed   t o   f i nd"a   sub -op t ima l   con t ro l   wh ich   t r ans fe r s  

the  system from the   po in t  xo = (1,2,3) t o   t h e   o r i g i n .  The 

norm of   the   cont ro l   vec tor  i s  c o n s t r a i n e d   t o  be e q u a l   t o   o r  

less than  uni ty .  

The e igenvalues   a re  -1, -2, and  -3  with  the  corresponding 

eigenvectors   of  4' being ( O , O , l ) ,  ( O , l , - 1 )  and  (2,-2,l). The Liapunov 

func t ions  are found  from  equation (6.1) t o  be 

The corresponding  opt imal   controls   are   then 
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By the  use of t h e   i n i t i a l  s ta te  x0 I (1 ,2,3)   and  the  re la t ions 

pi u'ui(xOyl) ,  i t  is  p o s s i b l e   t o   s o l v e   f o r   t h e  components of the  

c o n t r o l   v e c t o r   i n  terms of the  pi's. 

u3 = - P 1  

By s e t t i n g  V1(xoyP1) = V2(xo$2) = V3(x0,P3),  one obta ins   the   fo l lowing  

two equat ions 

In (- 3 + 1) = 1/2 In(- 4 7  + 1) 
P1 P2 

In (- + 1) = 1/3  In(- + 1) 
3 1 

p1 p 3  

(6.18) 

(6.19) 

I n   o r d e r   t o   o b t a i n   t h e   d e s i r e d   c o n t r o l   v e c t o r ,  i t  i s  necessary 

to  solve  equations  (6.18)  and (6.19) s imultaneously  with 11 u 11 = 1. The 

answers   that  one o b t a i n s   a r e  

p1 = 0.714 

P2 

p3 

= 0.0543 

= 0.00716 

The des i red   sub-opt imal   cont ro l  is  then 

u(xO) = (-0.291, -0.637, -0.714) 
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6 . 4  Discussion  of  the Method 

In   t he   p rev ious   s ec t ions ,  a method of   ob ta in ing   sub-opt imal  

con t ro l  of systems  in   which  the  control   matr ix  is non-singular was 

developed.  Every  sub-optimal  control  method  should  satisfy two r equ i r e -  

ments. F i r s t ,   t h e  method should make i t  easy  to   design  and implement the  

sub-optimal  control  system. Second, the  performnce  of   the  sub-opt imal  

control   system  should be acceptab ly   c lose  t o  t h e   t r u e  optimum. 

This  method  has s e v e r a l   a s p e c t s   w h i c h   a s s i s t   i n   t h e   d e s i g n  and 

implementation  of  the  sub-optimal  system.  These  points  have  been 

d i scussed   i n   s ec t ion  6,2, but   a re   repea ted   here   for   re fe rence .   In   the  

absence of a dis turbance  the  control   vector ,   once  obtained,   remains 

cons t an t   un t i l   t he   sys t em  r eaches   t he   o r ig in .  The t r a n s i t i o n  time from 

any p o i n t   t o   t h e   o r i g i n   a s  well  a s   t h e   t r a j e c t o r y   t o   t h e   o r i g i n   c a n  be 

obtained  readi ly .  The isochrones  are   easy  to   f ind, ,   In   designing a 

closed-loop  control   system  using  this  method, i t  is necessary   for   the  

cont ro l le r -computer   to   so lve   on ly   a lgebra ic   equa t ions   thus   a l lowing  

continuous con t r o  1. 

U n t i l  now, t h e   q u a l i t y  of the  performance  of  the  sub-optimal 

has  been  ignored. It  i s  shown i n   t h i s   s e c t i o n   t h a t   t h e   q u a l i t y  i s  

acceptab le ,   Because   o f   the   d i f f icu l ty   involved ,  i t  i s  n o t   p o s s i b l e   t o  

obtain  the  true  optimal  solution  and  hence i t  is necessary   to  u s e  t he  

approach   d i scussed   in   sec t ion  5.4. I n   p a r t i c u l a r ,  i t  is  shown tha t   t he  

sub-optimal  isochrone,  Si ,  i s  t angen t   t o   t he  optimum isochrone, S o ,  a t  

seve ra l   po in t s .  

As was po in ted   ou t   i n   s ec t ion  5.4, t he re  must be two poin ts  on 

the  Vl(x, l )  = To su r face  from  which t h e   o r i g i n  is reached  in  To seconds 
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as a s p e c i a l  case of   reaching   the   sur face   us ing   the   cont ro l  u = ul (x ,  1). 

Since   the   sys tem  reaches   the   o r ig in   in  To seconds, it must a l so   r each  a l l  

of   the  Vi(x,l) = 0 s u r f a c e s   i n   t h e  same time. Hence Vl(xO,l) = V2(x0,p2) = 

- 0  P Vn(xo,fn),  where pi = u ( x  ,l) 'ui(xo,l), is  s a t i s f i e d  a t  t h i s   p o i n t .  1 

The c o n t r o l   u l ( x 0 , l )   t h e r e f o r e   s a t i s f i e s  a l l  of the  condi t ions  of   the  

sub-optimal  control  and  hence it is  the  sub-opt imal   for   these  points .  

Therefore   these   po in ts  must  be on the  sub-opt imal   isochrone.  But i t  i s  

shown i n   s e c t i o n  5.4 t h a t   t h e s e   p o i n t s   a r e   a l s o  on the  So sur face .  Hence 

the  sub-optimal and optimal  isochrones must  be tangent  a t  these   po in ts .  

I n  a similar fashion,  one  could  argue  that   there   are  two po in t s  

on each  Vi(x,l) = To surface  which  are  on both  the  optimal and sub-optimal 

isochrones.  Hence the re  must be 2n p o i n t s   a t  which  these  surfaces   are  

tangent ,   Since  both  of   the  surfaces   are  smooth, i t  i s  l o g i c a l   t o  assume 

t h a t   t h e y   a r e   c l o s e   i n  some region  about  each  of  these  points,  

One could  get  a d i r e c t  measure  of  the  quali ty  of  the  sub-optimal 

c o n t r o l  by determining  the  opt imal   isochrones  for   par t icular   problems 

such  as  the  ones  in  examples  6.1  and  6.2. However, t he   adv i sab i l i t y   o f  

t h i s  is  highly  quest ionable .  F i r s t ,  a s  was poin ted   ou t   in   Chapter  2, 

the   computat ional   labor   involved  in   obtaining  the optimum s o l u t i o n   f o r  

even  one  point i s  horrendous  for a l l  b u t   t r i v i a l  problems, To f i n d  a 

complete se t   o f   such   po in t s  i s  almost  unthinkable.  Second, i f  one were 

to   car ry   ou t   such   computa t ions ,   the  most t h a t  one  could  conclude would be 

that   the   sub-opt imal  method was good o r  bad f o r   t h a t   p a r t i c u l a r  example. 

It appears   reasonable  from the  above  points   to   conclude  that  

t h i s   sub -op t ima l   con t ro l  method r ep resen t s   an   accep tab le  compromise 
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between  system  complexity  and  speed  of  response. 

Although  the method p r e s e n t e d   i n   t h i s   c h a p t e r  is  s i g n i f i c a n t  and 

impor tan t   in  i t s  own context ,  i t s  major   s ign i f icance  i s  in   providing  an 

underlying framework fo r   fu tu re   r e sea rch .   In   t he  case of   non-singular  

- B matrix,   several   other  sub-optimal  methods  have been suggested.  None 

of  these  methods, however,  have, as of  yet,  produced a sub-optimal 

cont ro l   be t te r   than   tha t   p resented   here .  The  number of prac t ica l   sys tems 

f o r  which 2 i s  non-singular  i s  l imi t ed  and  hence  addi t ional   research i s  

needed t o  ex tend   t h i s  method to   t he   ca se  where  the  matrix i s  s ingu la r .  
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Chapter 7 

CONCLUSIONS AND F U T W  RESEARCH  TOPICS 

7,1 Conclusions 

I n   t h i s  work, t he  Second Method of  Liapunov was combined wi th  

the  minimum p r i n c i p l e   t o  form a b a s i s   f o r  a method  of  closed-loop, 

approximately  t ime-optimal  control of l inear   systems  with bounded con t ro l  

of  l inear  systems  with bounded c o n t r o l  norm. The f i r s t   s t e p  was t o  show 

tha t   so lv ing   t he   bas i c   op t imiza t ion  problem i s  equ iva len t   t o   so lv ing  a 

f i r s t - o r d e r   p a r t i a l   d i f f e r e n t i a l   e q u a t i o n   w h i c h  is i d e n t i c a l   t o   t h e  

Hamilton-Jacobi  equation.  Although i t  was n o t   p o s s i b l e   t o   s o l v e   t h i s  

equat ion is  general ,  a s p e c i a l   c l a s s   o f   s o l u t i o n s  w a s  shown t o   e x i s t  

which  provide a foundat ion   for  a sub-opt imal   control  method. 

By the   use   o f   these   so lu t ions ,   ca l led   e igenvec tor   sca la r  

products,  i t  is  p o s s i b l e   t o   f i n d   s u r f a c e s  which bound the   op t imal  

isochrones from the   ou ts ide .  The inab i l i t y   t o   f i nd   such   su r f aces   has  

been a ser ious   d i f f icu l ty   in   des igning   approximate ly   t ime-opt imal  

systems  in   the  past .   Al though  this   surface  does noc  approximate che 

optimal  isochrone  uniformly i t  i s  shown t h a t   t h e  two su r faces   a r e   t angen t  

a t  2n poin ts .  

The e igenvec tor   sca la r   p roduct   so lu t ions  a l so  form a b a s i s   f o r  

sub-opt imal   control  method for   systems  in   which  the  control   matr ix  is 

non-singular .   This  method has   several   advantageous  features .  F i r s t ,  

in   the  absence  of   dis turbances,   the   control   vector ,   once  obtained,  

remains  constant  unti l   the  system  reaches  the  origin.   Second,  the 

73 



t r a n s i t i o n  time from  any p o i n t   t o   t h e   o r i g i n  as w e l l  as t h e   t r a j e c t o r y  

t o   t h e   o r i g i n  can be readi ly   ob ta ined .  The sub-optimal  isochrones  can 

a l s o  be e a s i l y  found.  Third,   in  designing a closed-loop  system  using 

t h i s  method, the  control ler-computer   must   only  solve  a lgebraic   equat ions 

and  hence  the  control  can be  computed continuously.   This  should be 

cont ras ted   wi th  many of  the  present  methods  which  require  on-line 

s o l u t i o n  of two-point  boundary  value  problems  and  hence  discrete  control. 

Al though  obtaining  the  opcimal   isochrones was computationally 

impossible, i t  was shown that   the   sub-opt imal   isochrones  are   tangent  to 

the   op t imal   i sochrones   a t  2n po in t s  by the   use   o f   the   e igenvec tor   sca la r  

product  isochrones.  Hence i t  appeared  reasonable   to   conclude  that   the  

performance  of  the  sub-optimal  system was an   acceptab le  compromise 

between  system  complexity  and  speed of response. 

There   a re   th ree   major   cont r ibu t ions  of t h i s  work. F i r s t ,   t h e  

discovery  of  the  eigenvector  scalar  product  solution,  second,  the 

bounding  of  the  optimal  isochrones,   and  third,   the  design of sub-optimal 

control   systems by the  use of  the  e igenvector   scalar   product   solut ions.  

It  should be pointed  out  again  that   the  development of t h i s  

sub-optimal  method is  s t i l l  incomplete.   Since  only  systems  in  which 

the   cont ro l   mat r ix  i s  non-singular  can be t r e a t e d   a t   p r e s e n t ,   t h e  

number of prac t ica l   sys tems  to   which  t h e  procedure  can be appl ied  i s  

l imited.  Hence, fu r the r   r e sea rch  is needed t o  ex tend   t h i s  method t o  

the  case of s ingu la r   con t ro l   ma t r ix .  

7.2 Future  Research  Topics 

As poiuted  out   previously,   the  number of p rac t i ca l   sys t ems   i n  

which  the  control   matr ix  i s  non-singuler  i s  very  l imited.  Hence, i n  

74 



o r d e r   t o  make the material presented  here  of prac t ica l   impor tance ,  i t  

is necessa ry   t o  remove t h i s   r e s t r i c t i o n .   C u r r e n t   r e s e a r c h  i s  pointed 

toward t h i s  problem. It w a s  noted i n  Chapter 5 tha t   the   e igenvec tor  

s ca l a r   p roduc t   so lu t ions  do n o t   r e q u i r e   t h a t  be non-singular.  

Therefore ,   these   so lu t ions   can  be used   i n   c r ea t ing  a sub-opt imal   control  

method f o r  s y s t e m s  i n  which  the  control   matr ix  is s ingular .   Prel iminary 

resul ts   wi th  second-   and  third-order   systems  indicate   that   th is   approach 

should be successfu l .  

There   a re   o ther   ex tens ions   to   the   sub-opt imal  method  which  need 

t o  be made. F i r s t ,  i t  i s  hoped tha t   t he   r equ i r emen t   fo r   r ea l   e igenva lues  

can be removed.  Second, i t  wouid  be of   value  to   extend  the above  method 

t o  some nonlinear  problems. The most   encouraging  area  a t   present  is  

bi l inear   systems,   in   which  the  s ta te   and  control   var iables   are   separately 

l i n e a r   b u t   j o i n t l y   n o n l i n e a r .  Because  of t h e i r   c l o s e   r e l a t i o n   t o   l i n e a r  

systems, i t  appea r s   qu i t e   poss ib l e   t ha t   t he  above  method  can be 

success fu l ly   app l i ed  Lo bil inear   systems.  

It i s  hoped t h a t  by complet ing  these  extensions  that   the  

p rac t i ca l   s ign i f i cance   o f   t he  method presented  here  w i l l  be g r e a t l y  

increased. 

75 



Appendix A 

SUB-OPTIMAL CONTROL METHODS  USING THE SECOND METHOD 

A. 1 In t roduc t ion  

In   t h i s   append ix ,   s eve ra l  methods  of  designing  sub-optimal 

control   systems by the  use  of  the  Second Method of  Liapunov are 

presented.  The  methods presented  here  are not   in tended   to  be an 

exhaustive  compilation  of  such  methods  but  rather were chosen  because  of 

t h e i r   r e l a t i o n   t o   t h e   m a t e r i a l   i n   C h a p t e r  4. 

Each of   the   fo l lowing   th ree   sec t ions   begins  w i t h  a b r i e f  

discussion  of   the  concepts   or   ideas   underlying  that  method. This i s  

followed by a sho r t   p re sen ta t ion   o f   t he  method  which i s  t h e n   i l l u s t r a t e d  

by a numerical  example. The sect ions  conclude  with a discussion  of   the 

advantages  and  disadvantages  of  each  method.  For  each  of  the  methods 

presented,  the  uncontrolled  system i s  assumed t o  be a t   l e a s t   s t a b l e  i n  

the  sense  of Liapunov. 

Unfortunately,  a l l  of   these methods  have three  basic  problems: 

(1)  they are approximate, ( 2 )  e i t h e r  no est imate   of   the   approximation 

e r r o r  i s  poss ib l e ,   o r   t he   e s t ima te  i s  overly  conservat ive,  and (3)  i t  i s  

necessary  to   choose a V(x) for  which no general   procedure i s  presented. 

Hence these  methods  were  never  widely  accepted. 

A. 2 Estimation  of  Ti-ansient  Behavior 

One o f   t h e   f i r s t   u s e s  of the  Second Method a s  a des ign   too l  was 

in   t he   e s t ima t ion  of t r ans i en t   behav io r  . I n   p a r t i c u l a r ,  i t  was 
11, 12 

used  to   obtain  an  approximation  of   the  set t l ing  t ime.  By making t h i s  

approximat ion   of   the   se t t l ing  time as  small as   poss ib le ,  i t  was argued 

that  the  speed  of  response would be decreased.  Johnson13  has  recently 

employed  such  an  approach  for  the  design  of a c lass   of   sub-opt imal  

cont ro  1 sys  tems . 
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Consider a pos i t i ve   de f in i t e   s ca l a r   func t ion ,   V(x ) ,  whose t o t a l  

time de r iva t ive ,  V(x), is  nega t ive   de f in i t e .  Then by the  use  of  the 

Second Method, one may conclude   asymptot ic   s tab i l i ty   o f   the   o r ig in .  

However, although  ooe knows t h a t   t h e  motion  tends  toward  the  origin  the 

ra te  a t  t h e   o r i g i n  is  approached unknown. Now def ine  as 

Then 

which may be so lved   t o   g ive  

( A .  3 )  

V ( x ( t ) )   a t  any time t >  0 can be obtained by the  use of equat ion ( A . 3 ) .  

Therefore  from t h e   i n i t i a l   s t a t e  xo the   s ta te   o f   the   sys tem must be 

found  within  or on the   su r f ace  V(x) = V(xo)e'Ytl a f t e r  t l  seconds.  For 

a n   i l l u s t r a t i o n   o f  how this   procedure  can be used to  e s t i m a t e   s e t t l i n g  

t ime,   consider   the  fol lowing example. 

Example A . l  The equat ions of motion  for  the  system  are 

It i s  d e s i r e d   t o   f i n d  an  upper bound  on the  time t h a t  i t  takes  

the   sys tem  to   ge t  from t h e   i n i t i a l   c o n d i t i o n  xo = (1,O) t o  

wi th in   the   a rea   def ined  by ( ~ 1 ) ~  + ( ~ 2 ) ~  5 0.01. 
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I n   t h i s  case i t  i s  necessary to  f ind   t he   l a rges t   va lue   o f  K 

such   t ha t   t he   su r f ace  V(x) = K l ies e n t i r e l y   w i t h i n   o r  a t  most tangent  

t o  the   sur face  ( ~ 1 ) ~  + ( ~ 2 ) ~  = 0.01. See Figure  A . l .  Then by the   use  

of   equat ion (A.3), t h e   s e t t l i n g  time, ts, is  

However be fo re   t h i s   can  be  done i t  i s  n e c e s s a r y   t o   f i n d  

Le t   c (x )  be def ined by the   quadra t i c  form $(x) = -x'Qx where Q 

i s  a symrre t r ic   pos i t ive   def in i te   mat r ix .  Then  V(x) i s  the   quadra t i c  

from  V(x) = x'px  where i s  a posi t ive  def ini te   symmetr ic   matr ix   which 

i s  the   un ique   so lu t ion   of   the   mat r ix   equat ion  

" A'P + pA -9 

Kalman and  Bertram12  have shown t h a t  is given by 

Now l e t  Q be 

Then by the  use  of   equat ion (A.6), - p is given by 

and 9 i s  equal  0.775. 

For  this  V(x),  K i s  found t o  be 7.64 x The s e t t l i n g  

t ime  as  given by equat ion (A.5) is  

ts = ~ 

-1 7.64 x 10-3 
0.775 In ( 5 1 

= 8.35 seconds 
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FIGURE A.I ESTIMATION OF SETTLING 
TIME 
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This  method  of e s t ima t ing   t he   t r ans i en t   behav io r   o f  syscems 

has   severa l   d i sadvantages .   F i r s t ,   the  method is approximate  and no 

knowledge  of the  qual i ty   of   the   approximation is known. Second, t he  

value  of  T\ and 

of  picking  V(x) 

de f in i t e .   Th i s  

l inear   systems.  

hence tS depend  on t h e   p a r t i c u l a r  V(x)  used. No method 

is  known. Third, i t  is necessa ry   t ha t  V(x) be nega t ive  

is  v e r y   d i f f i c u l t   t o   a t t a i n   i n   p r a c t i c e   e x c e p t   f o r  

. 

A .  3 Kaknan-Bertram Method 

I n  1960 Kalman and Bertram'' presented a method for   des igning  

approximately  t ime-optimal  control  systems.  Their method was based on 

the  knowledge t h a t   f o r  a closed, bounded control   region,  U, t he   con t ro l  

vec tor  i s  always  on  the  boundary. They suggested  minimizing  the  time 

de r iva t ive  of   V(x)   arguing  that   th is  would make V(x)  approach  zero  most 

rapidly,   and  the s t a t e  of   the  system  should  reach  the  or igin  in  minimum 

time . 
Consider  the  system 

x = - Ax + gu (A. 7 )  

where cha cont ro l   reg ion  U i s  def ined by t h e   s e t  of a l l   c o n t r o l   v e c t o r s  

u such   t ha t   Iu i l  5 ~ i ,  i = 1,2, ..., n and M~ a r e   pos i t i ve   cons t an t s .  

Choose a r b i t r a r i l y  a pos i t ive   semidef in i te   mat r ix ,  4, and  then  f ind  the 

p o s i t i v e   d e f i n i t e   m a t r i x ,  p, which i s  the  unique  solut ion  of   the  matr ix  

equat ion 

" A'P + EA = -Q (A. 8) 

Now l e t  V(x) be def ined by V(x) = x'px  and  V(x,u) i s  

V(x,u) = -xQx  + 2u'g'px (A.4) 
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In order   to   min imize   V(x ,u)   wi th   respec t   to  a l l  admissible   controls ,  i t  

is  necessary to minimize  the  second term i n  V(x,u). To minimize t h i s  

term, each component of u must  have i ts  maximum magnitude  in   the 

d i rec t ion   oppos i te   tha t   o f   the   cor responding  component of B'Ex. 

Therefore  

u i  = "is@ [ (B'PX)i-J (A. 10) 

A s  an   i l l u s t r a t ion   o f   t h i s   p rocedure   cons ide r   t he   fo l lowing  example. 

Example A.2 The equations  of  motion  of  the  system  are 

I t  i s  d e s i r e d   t o   d r i v e   t h i s   s y s t e m   t o   t h e   o r i g i n  from  any i n i t i a l   s t a t e  

i n  minimum time. 

The f i r s t   s t e p   i n   t h e   p r o c e d u r e  is an a rb i t r a ry   cho ice   o f  9. 

I n  t h i s   c a s e  l e t  4 be 

i n  which  case 2 as   obtained from equat ion (A.8) becomes 

Then by the  use  of   equat ion (A.lO) the   cont ro l   vec tor  components a r e  

found t o  be 

u1 = -M1sgn(2x1) 

~2 = -M2sgi1(2~1 + ~ 2 )  
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This  method  has severa l   advantages .   F i r s t ,  it provides a 

.c losed-loop  solut ion  of   very  s imple form.  The method is r e l a t i v e l y   e a s y  

to   apply  to   high-order   and  mult iple   input   systems.  The con t ro l   ma t r ix  

- B i s  n o t   r e q u i r e d   t o  be non-singular.  

The main disadvantage  of  the method is  the  lack  of  a procedure 

for   choosing  the 4 matr ix  and  hence  V(x).  Since  the  solution  depends 

s t rong ly  on  V(x), i t  would be h i g h l y   d e s i r a b l e   t o  have a procedure  for  

choosing  the  "Lest"  V(x)  or a t   l e a s t   a n   i t e r a t i v e  method for  improving 

on an i n i t i a l   c h o i c e .  Again  the  method  provides  only  approximately 

optimum performance  and no procedure   for   eva lua t ing   the   qua l i ty  of the  

approximation i s  presented. The resul t ing  sub-opt imal   control   system 

normally  experiences  chat ter ing  near   the  or igin  which  degrades i t s  

performance. 

A.4 The Nahi Method 

Nahi14  has recent ly   p resented  a method  of  designing  sub-optimal 

control  systems  based on the  concept  of  forcing 

min 
UEU 

V(X,U) 5 -K1V(x) - 2K2 dm (A.  11) 

This  method w a s  based on two arguments. F i r s t ,  minimizing  V(x,u)  would 

minimizing  the  response  time.  Second,  forcing minimum V(x,u) t o  be l e s s  

than   or   equa l  t o  -KIV(x) - 2 K 2 4 3  would make the  response time f i n i t e  

as i s  shown below. 

The systems  to be considered must be represented   in   the  

following  form 

X = - AX + Bu (A. 12) 

where is  a non-singular   matr ix   and  the  control   region U is def ined by 
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t he  se t  of a l l  con t ro l   vec to r s  u such tnat  11 u I I  6 1. Choose a r b i t r a r i l y  

a p o s i t i v e   d e f i n i t e   m a t r i x  4, and  f ind   the   pos i t ive   def in i te   mat r ix ,  I?, 
which i s  the   un ique   so lu t ion   of   the   mat r ix   equat ion  

" A'P + pA -4 (A .  13) 

Now l e t  V(x) be def ined by V(x) = x'px  and  then  V(x,u) is  

In   o rder   to   min imize   V(x ,u)   wi th   respec t   to   a l l   admiss ib le   cont ro ls ,  u 

must be given by 

Then subs t i t u t ing   equa t ion  ( A . 1 5 )  for u in to   equat ion  ( A . 1 4 )  gives 

(A.  15)  

(A .  16) 

Nahi14  has shown t h a t   t h e r e   e x i s t s  two pos i t ive   cons tan ts ,  K L  and K2 

def ined by 

K1 = minimum eigenvalue of -1 
(A .  17) 

= minimum eigenvalue of PBB' (A .  18) 

such   t ha t   t he   fo l lowing   cond i t ions   a r e   s ac i s f i ed  

1. x'Qx 5 Klx'Ex (A .  15) 

Then subs t i t u t ing   equa t ions  ( A . 1 9 )  and ( A . 2 @ )  i n to   equa t ion  ( A . 1 6 )  gives 

min 
uru V(X,U) _L -Klx'gx - 2K2 d z  

- -KlV(x) - 2K2 1 s  (A .  2 1) 



Now f o r  some g i v e n   i n i t i a l  s t a t e  x(O),  equation ( A . 2 1 )  can be s o l v e d   t o  

ob ta in  

If V(x( t ) )  is  se t  equal   to   zero ,   then  t becomes t h e   t r a n s i t i o n  time from 

x(0)  Lo t he   o r ig in ,  to, 

Hence the   t r ans i t i on   t ime  i s  noL only known t o  be f in i t e ,   bu t   a l so   an  

upper bound on i t  is obtained.  A s  an i l l u s t r a t i o n  of the  above  procedure 

consider  the  following  example.  

Example A.3 The equacions of motion of the  system  are  

(A. 23) 

It i s  des i r ed  t o  design a sub-optimal  control  system  which 

t ransfers   the   sys tem from  any i n i t i a l   s t a t e   t o   t h e   o r i g i n   i n  

a f i n i t e  time. An upper bound on the  t ransi t ion  t ime  should 

a l s o  be obtained.  

The f i r s t   s t ap   i n   t he   p rocedure   p re sen ted  above i s  t o  

a r b i t r a r i l y  choose a Q matrix.   For   this   problem  le t  9 be 
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i n  which  case  as  obtained from equat ion (A.13) i s  

From equat ions ( A . 1 7 )  and ( A .  18) the constants  K and K2 a r e  1 

found  to be 

K2 = 1.224 

Then by the  use  of  equacion  (A.22), che  upper on the   t rans i t ion   t ime i s  

This method  has two ser ious  disadvantages.  F i r s t ,  the   cont ro l  

matrix,  E ,  must be non-s ingular .   This ,   in   genera l ,  i s  n o t   t r u e   i n  

p rac t i ce .  If i s  s ingular ,   then  K2 i s  zero,   and  the  transit ion  t ime i s  

i n f i n i t e .  Second, as   pointed  out   in   the  previous  sect ion,   there  is  no 

procedure  for  choosing  the  "best" 9 matrix.  

On the   o the r  hand, the  method  does  provide a re lac ive ly   s imple  

closed-loop  solut ion.  The t r a n s i t i o n  t i m e  i s  f i n i t e  and an  upper bound on 

it i s  readi ly   ob ta ined .  Howe-ver, there  is  no means of judging how c lose  

the   c r ans i t i on  time of  the  sub-optimal  system i s  t o   t h e  optimum. 
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SECTION I1 

NONLINEAR STABILITY OF COUPLED CORE REACTORS 

Chapter 1 

INTRODUCTION 

A c r i t i c a l   r e a c t o r  which cons is t s   o f  two o r  more independently 

s u b c r i t i c a l   c o r e s  i s  a coupled   core   reac tor .   This   descr ip t ion   could  

undoubtedly be app l i ed   t o  many types  of   reactors   including  heterogeneous 

c r i t i ca l   a s sembl i e s   w i th   t he   i nd iv idua l   fue l -modera to r   ce l l s   t r ea t ed  as 

coupled  cores.  Of immediate prac t ica l   impor tance ,  however, i s  the   case  

of   adjacent  power r e a c t o r s   c o n s t i t u t i n g  a c r i t i c a l  system,  and  par t icular ly  

o f   t he   c lus t e r ing  of   nuclear   rocket   engines .  

I n  a coup led   co re   r eac to r ,   t he   coup l ing   e f f ec t   r e su l t s  from 

neutron  leakage  to  a given  core  from  each  of  the  other  cores.  Because 

leakage  neutrons  travel  between  cores  in a f i n i t e  time, the  behavior  of 

a given  core  depends  not  only upon processes   occur r ing   a t   the   p resent  

t i m e ,  bu t   a l so  upon the  past  his tory  of   the  other   cores .   Herein l ies  the  

uniqueness  of  the problem. The s e t   o f   d i f f e r e n t i a l   e q u a t i o n s   d e s c r i b i n g  

t h e   k i n e t i c s  of  each  core  contains,  due to   the   l eakage   of   neut rons  from 

the   o ther   cores ,   source  terms with  the  argument  of  the  dependent  variable 

r e t a rded   o r   de l ayed   i n  time. Systems  of   equat ions  of   this   type  are  

systems  with  delay,   systems  with  lag,   delay-different ia l   systems,   or  

d i f fe ren t ia l -d i f fe rence   sys tems.  

The s t a t i c  and  dynamic  behavior  of  coupled  core  reactors  has 

been inves t iga ted   p rev ious ly  (1,3,16,17). Kine t i c s   s tud ie s  have  been 

res t r ic ted   to   convent iona l   l inear   ana lyses   where in   the   f requency   response  
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of   the  zero power t ransfer   func t ion   of   each   of   the   cores  is  examined, 

Addit ional ly ,   conclusions on s t a b i l i t y  have  been drawn by apply ing   the  

Routh Test (18) to   t he   ze ro  power t r ans fe r   func t ion   o f  a given  core.   In 

t h i s  method, the   exponent ia l  term i n   t h e   c h a r a c t e r i s t i c   e q u a t i o n  must be 

replaced by a r a t io   o f   po lynomia l s ,   spec i f i ca l ly   t he  Pade or   cut-product  

approximants (18). The roo t s   o f   t he   cha rac t e r i s t i c   equa t ion   fo r  a 

l inear  system  can be loca ted   exac t ly ,  and s t a b i l i t y   d e t e r m i n e d .   S t a b i l i t y  

c r i t e r i a  fo r   cha rac t e r i s t i c   equa t ions   con ta in ing   exponen t i a l   t e rms  w i l l  be 

discussed  in   Chapter  3 .  

It would be useful   to   develop a method by which  the s t a b i l i t y   o f  

coupled  core  systems  could be r e a d i l y  examined.  During  the las t  th ree  

decades,   researchers have  found t h a t   t h e  most un ive r sa l  method of 

i n v e s t i g a t i n g   s t a b i l i t y  is  the  Second Method of  Liapunov (10). I t  i s  

na tu ra l ,   t he re fo re ,   t ha t  a technique  based on Liapunov's  theory be 

d e r i v e d   f o r   t h i s  problem. This  approach  has  several   advantages  over  the 

previously  mentioned  methods  for  coupled  core  systems. The Second Method 

does  not   require   that   the   system be l i nea r ,  and i t  i s  known t h a t   t h e  

r e a c t o r   k i n e t i c s   e q u a t i o n s   a r e   n o n l i n e a r   f o r  power reac tors   such   as   rocke t  

sys tems  wi th   t empera ture   induced   reac t iv i ty   e f fec ts .  I t  w i l l  be seen, 

moreover, t ha t   t he  Second Method is  more use fu l   t han   o the r  methods  even i n  

so lv ing   l inear   p roblems  in   d i f fe ren t ia l -d i f fe rence   sys tems.  The Second 

Method y i e l d s   o n l y   s u f f i c i e n t   c o n d i t i o n s   f o r   s t a b i l i t y ,  so t h e   r e s u l t s   a r e  

e i t h e r   e x a c t   o r   c o n s e r v a t i v e .  The use of   approximants   for   the  exponent ia l  

term o f   t h e   c h a r a c t e r i s t i c ,  however, l eads   to   conc lus ions   tha t   the   sys tem 

is s t a b l e  when i t  i s  n o t   i n  many cases. 
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By use  of  the  Second Method, the  extensive  manipulat ions  required 

t o  inves t iga t e   each   co re   s epa ra t e ly  w i l l  be e l i m i n a t e d ,   a n d   s t a b i l i t y  w i l l  

be d i scussed   i n  terms of   the  system  as   an  ent i ty .   Final ly ,   the   recent   use 

o f   t he  Second Method in   conjunct ion  with  opt imal   control   system  synthesis  

(6,7) d ic t a t e s   t he   unde r s t and ing   o f   t he  Second Method a s   a p p l i e d   t o  

d i f fe ren t ia l -d i f fe rence   sys tems  toward   poss ib le   fur ther   s tudy   in   the   a rea  

of  optimum control  of  coupled  core  reactor  systems. 

There are no  fundamental   changes  in  Liapunov's  theories  in 

applying them to  systems  with  delay.  The theo ry   o f   d i f f e ren t i a l -d i f f e rence  

equations,  however, d i f f e r s   cons ide rab ly  from the  theory  of   ordinary 

d i f fe ren t ia l   equa t ions   in   ques t ions   o f   un iqueness ,   ex is tence ,   and  

asymptotic  behavior.  It i s  necessary  to   demonstrate   the  unique  propert ies  

of   d i f fe ren t ia l -d i f fe rence   equat ions   to   unders tand   the   requi rements   for  

t he  Liapunov  funct ion  in   the  presence of time delay. The problem  of 

s e l e c t i n g  a s u i t a b l e  Liapunov  function i s  one  of  paramount  importance  in 

s t u d y i n g   t h e   s t a b i l i t y   o f   m o t i o n   o f   o r d i n a r y   d i f f e r e n t i a l   e q u a t i o n s .  

This  problem is  more d i f f i c u l t   f o r   d i f f e r e n t i a l - d i f f e r e n c e   e q u a t i o n s .  

For  example,  the  presence  of  cross  products  of  the unknown va r i ab le   w i th  

and  without   the  re tarded  argument   ra ises   quest ions as t o   t h e   s i g n  

d e f i n i t e n e s s  of the  funct ions  involved.  Some  new concepts   such  as  

Krasovskii 's  Liapunov  functional  must be introduced. 

When t h e   d i f f i c u l t i e s   m e n t i o n e d  above a r e  surmounted, t he  

usefu lness   o f   the  Second Method i n   d e a l i n g   w i t h   t h e   s t a b i l i t y   o f  time 

de lay   sys tems  in   genera l   and   coupled   core   reac tor   sys tems  in   par t icu lar  

can be shown. 
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This   report   provides   the  prel iminary  basis   for   solving  the 

problem.  Chapter 2 conta ins   the   der iva t ions   o f   the   reac tor   k ine t ics  

equations  for  coupled  core  systems.  This  development  includes  the 

representa t ion   of   these   equat ions   in  a form  amenable t o   a n a l y s i s  by u6e 

of  Liapunov's  Second Method. Chapter 3 is  a survey  of  the  elements of 

t he   t heo ry   o f   d i f f e ren t i a l -d i f f e rence   equa t ions ,   i nc lud ing   de f in i t i ons ,  

no ta t ion ,  and the   ques t ion   of   s tab i l i ty   o r   asymptot ic   behavior   wi th  

specific  examples.  The Second Method of  Liapunov i s  introduced  in  

Chapter 4 with  the  emphasis  on  the  extension  of  the method t o  time 

de lay s y s  tems 
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Chapter 2 

THE KINETICS  EQUATIONS FOR COUPLED CORE REACTOR SYSTEMS 

In t roduc t ion  

In  the  development  that   follows, a l og ica l   de r iva t ion   o f   t he  

k ine t ics   equa t ions   based  upon a genera l  knowledge of   the  processes  

involved i s  made. The  model i s  t h a t   o f  a po in t   r eac to r   w i th   t he   va r ious  

charac te r i s t ic   parameters   represent ing   average   va lues   wi th   respec t   to  

space. A l l  t he   neu t rons   t ha t   pa r t i c ipa t e   i n   t he   p rocesses   a r e  of thermal 

energy.  Because  each  core  of  the  system i s  t r ea t ed   s epa ra t e ly ,   t he  

s p a t i a l   e f f e c t s   o f   t h e   v a r i a b l e s   a r e   a c t u a l l y   c o n s i d e r e d   t o  some degree. 

Neutron  Kinetics 

I f   t h e r e  i s  a dens i ty   n ( t )   o f   thermal   neut rons   wi th  a mean 

l i f e t i m e  .lo i n  a g iven   core ,   the   ne t   ra te  of disappearance  of  these 

neutrons is  n ( t ) / a 0 .  The e f f e c t i v e   m u l t i p l i c a t i o n   o r   t o t a l  number of 

neutrons  produced  in  the  next  generation p e r  o r i g i n a l   n e u t r o n  i s  k, A 

f ract ion  of   the  produced  neutrons  appears  some t ime   a f t e r   f i s s ion   occu r s .  

The t o t a l   d e l a y e d   f r a c t i o n  i s  @, c o n s i s t i n g  of  the sum of the  B j ,  the  

f r a c t i o n s   a t t r i b u t a b l e   t o  M d i s t inc t   g roups   o f  atoms  which  decay  with 

decay  constant X to   produce  the  delayed  neutrons,  The densi ty   of   the  

precursor  atoms is  c j ( t ) ,  and  the  delayed  neutrons  appear   a t   the  same 

ra t e   a s   t he   p recu r so r s  decay. The net   product ion  of   neutrons is  

j 

M 
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where p is  (k - l ) /k ,   t he   r eac t iv i ty ,  and 1 i s  ko/k, t h e   e f f e c t i v e  

l ifetime,  which i s  assumed t o  be constant .  The ne t   p roduct ion   of   the  

j t h  group of precursor  atoms is 

Expression (2.1) is incomplete  because  neutrons may appear  from 

o the r   sou rces   wh ich   a r e   gene ra l ly   ex t e rna l   t o   t he  system. In   t he   nex t  

sect ion  the  special   delayed  source  term  for   this   problem is discussed. 

A g e n e r a l   s o u r c e   S ( t )  is  defined  and E q s b  (2.1) and (2.2)  a r e   e q u a t e d   t o  

the   r a t e s   o f  change of the  neutron  and  precursor   densi t ies ,   respect ively.  

The r e s u l t  is 

M 

j= 1 
* 9 n ( t )  - 5 n ( t )  + C A,cj( t )  + S ( t )  d t  

The r e a c t i v i t y  is  a func t ion  of time  because  changes  are  introduced by 

means of an ex terna l   device   such   as  a movable neutron  absorber.  

Eqs. (2 .3 )   a s   wr i t t en   a r e   l i nea r   w i th  a time  varying  parameter, 

p ( t ) .  It w i l l  be s e e n   t h a t   t h e   r e a c t i v i t y  can a l s o  be a funct ion  of  

other   system  var iables .  A nonl inear   sys tem  resu l t s .  

The  Delayed  Source 

A coupled   core   reac tor   cons is t s  of N cores,   and  neutrons  leaking 

from t h e   k t h   c o r e   i n f l u e n c e   t h e   i t h   c o r e  by con t r ibu t ing  a source of 

thermal  neutrons.   This  source is p r o p o r t i o n a l   a t  a g iven   t ime  to   the  

neu t ron   dens i ty   i n   t he   k th   co re  a t  a time T i k   e a r l i e r ,  where  Tik is  the  
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delay  time for   the   e f fec t ive   exchange   of   neut rons   be tween  the   cores   to  

t h e   i t h   c o r e  is 

It is  conce ivab le   t ha t   t he re   a r e   add i t iona l  terms due t o  

re f lec t ion   of   l eakage   neut rons   back   to  a spec i f i c   co re .   Th i s  means t h a t  

t he   pas t   h i s to ry   o f   t he   i t h   co re   a s   we l l   a s  of the   k th   core   in f luenced  

the   i t h   co re .   Th i s   t e rm would be 

N 

where  Yik  and T r ep resen t   t he   cons t an t  of propor t iona l i ty   and   de lay  

time re spec t ive ly   fo r   t he   s econd   o rde r   e f f ec t .   Th i s   p rocess  is  

i l l u s t r a t e d   f o r  a three-core   sys tem  in   F igure  2.1. There  could be even 

h ighe r   o rde r   e f f ec t s   bu t  a l l  except E q .  ( 2 . 4 )  w i l l  be neg lec t ed   fo r  now. 

i k  

Power Reactors 

Eqs. ( 2 . 3 )  r ep resen t   t he   behav io r   i n  time of a core  a t  zero 

power. I n  a power reac tor ,  a coolant  flows  through  the  core  removing 

the   genera ted   energy   in   the   form  of   hea t .   In   th i s   case   the   in t r ins ic  

r e a c t i v i t y   e f f e c t s  due to   the  temperature   changes  in   the  core   appear .  

Normally,  the  change in   the   phys ica l   d imens ions  of the  system,  which 

a f f ec t s   neu t ron   l eakage ,   causes   r eac t iv i ty   va r i a t ions .   In  a hydrogen 

coo led   nuc lea r   rocke t ,   an   add i t iona l   e f f ec t   r e su l t s  from  changes in   t he  

coolant   densi ty ,   hence  in   the  neutron  moderat ing  propert ies  of the  

system,  since  hydrogen i s  a s t rong  moderator .   In   any  case,   the   react ivi ty  

is  some function  of  temperature.  
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1 3  

FIRST ORDER SECOND ORDER 

FIG. 2.1 FIRST AND SECOND  ORDER  COUPLING EFFECTS IN 
A THREE-CORE SYSTEM. 



A lumped parameter  or  point  model  for  the  heat  removal  process 

in   each   co re  w i l l  be assumed. I n  a rocke t ,   espec ia l ly ,   the   parameters   and  

temperatures   of   interest   vary  s t rongly  throughout   the  core .   Proper  

s e l e c t i o n  of mean va lues   o f   va r i ab le s   and   pa rame te r s   t o   l ead   t o  a f a i r l y  

accu ra t e  model is then of great  importance.  

Over a period  of  t ime,  the  net   accumulation  of  energy  in a core 

is equa l   t o   t he   t o t a l   ene rgy   gene ra t ed  due t o   f i s s i o n  minus t h e   t o t a l  

energy removed by the   coolan t .  On a u n i t  time basis ,   the   generated  energy 

i s  the power p ( t ) ,  which i s  propor t iona l   to   n ( t ) ,   and   the   energy  removed 

i s  p ropor t iona l   t o   t he   d i f f e rence  between  the  average  core  temperature 

and  the  average  coolant   temperature ,   T( t )   and  Tc(t) ,   respect ively.  The 

energy  balance i s  

t t 

a n d   d i f f e r e n t i a t i n g   w i t h   r e s p e c t   t o  time 

d t  = p ( t )  - H(T(t)  - T c ( t ) ) .  ( 2 . 5 )  

MCr i s  the  product  of  the mass  and t h e   s p e c i f i c   h e a t  of the  core)  and H 

i s  t h e   t o t a l   h e a t   t r a n s f e r   c o e f f i c i e n t .  

From a s imilar   energy  balance on the  coolant   with mcc the  mass 

hea t   capac i ty  of the  coolant  and dm/dt o r  w the  mass flow  rate,  

mcC 
dTc(t) = H(T(t)  - T c ( t ) )  - wccTc(t). (2.6) 

d t  

The r e a c t o r  and coo lan t   t empera tu res   a r e   p ropor t iona l   i f  mc 
d T C W  
CT 

i s  negligible.   This  assumption i s  v a l i d   i f   t h e   c o o l a n t  is  gaseous, 
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making mcc small, o r   i f   t h e   f l o w  rate  i s  large,  making the  temperature  

d e r i v a t i v e   i n s i g n i f i c a n t .  Assuming t h a t   t h e  mass  flow rate  i s  constant ,  

Eqs. (2.5) and (2 .6 )  y i e l d   t h e   h e a t  removal  equation  for a given  core, 

where 'I i s  the  heat  exchange time constant   which  equals  (MCr(H + W C C ) )  

Hwc, . 
A f u r t h e r   s i m p l i f i e d  example would r e s u l t   i f  T and MCr were l a rge  so 

tha t   the   t empera ture  would be p r o p o r t i o n a l   t o   t h e  power. 

Some Reac t iv i ty   Funct ions  

The usua l   t empera ture   dependent   reac t iv i ty  is, t o  a good 

approximation, a l i nea r   func t ion  of  temperature.  Mohler (11) shows t h a t  

t h e   e f f e c t  due t o  hydrogen  density  changes  in a rocket  i s  approximately 

propor t iona l   to   the   p roduct  of t he   p rope l l an t   f l ow  r a t e  and the   inverse  

square  root  of  the  temperature.  

In   gene ra l  

p = Po0 + b(b) -t P O )  

where poo is a component o f   t he   r eac t iv i ty   r equ i r ed   t o   ma in ta in  

c r i t i c a l i t y   i n   t h e   s t e a d y   s t a t e ,   8 ( t )  is  an e x t e r n a l   r e a c t i v i t y   i n p u t  

and p(T) is the   general   temperature   funct ion.   Usual ly ,  

When temperature  and power are propor t iona l ,  

P(T) = cpP( t ) .  

( 2 . 9 )  

(2. l o )  

(2.11) 
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A S p e c i a l  S ta te  Var iab le  Form fo r   t he   K ine t i c s   Equa t ions  

The  methods of   t reatment   and  the  general   d iscussions  that  follow 

presuppose that t h e   n t h   o r d e r  dynamic  system is  r ep resen tab le  as n f i r s t  

o rde r   o rd ina ry   d i f f e ren t i a l   equa t ions .  The k ine t i c s   equa t ions ,  however, 

are  n o t   d i f f e r e n t i a l   e q u a t i o n s   b u t   d i f f e r e n t i a l - d i f f e r e n c e   e q u a t i o n s  due 

to   the  re tarded  argument   in   the  coupl ing  source  term.  The l i m i t a t i o n  is, 

i n   r e a l i t y ,   g e n e r a l  enough t o  admit s y s t e m s   o f   f i r s t   o r d e r   d i f f e r e n t i a l -  

difference  equat ions.   This   can be seen   c l ea r ly  from the   de f in i t i on   o f  

ord inary   d i f fe ren t ia l   equa t ions .   Equat ions   conta in ing   the   der iva t ives   o f  

the  unknowns w i t h   r e s p e c t   t o  one real  v a r i a b l e   a r e   o r d i n a r y   d i f f e r e n t i a l  

equat ions,   therefore  Eqs. (2.3)  and  (2.7)  meet  the  requirements  as  written. 

A fur ther   re f inement  i s  necessa ry   because   ques t ions   o f   s t ab i l i t y  

w i l l  be cons ide red   w i th   r e spec t   t o  some opera t ing   po in t .  A l i n e a r  change 

i n   v a r i a b l e s   s u c h   t h a t   t h e  new va r i ab le s   van i sh  a t  the   opera t ing   po in t  

ensures   tha t   the   der iva t ives   a l so   vanish .   This   def ines   the   equi l ibr ium 

point   about   which  s table   or   unstable   per turbat ions  occur .  

Normalized  with  respect   to   the  operat ing  point ,   the   t ransformed 

(2.12) 

The va r i ab le s   w i th   t he   subsc r ip t  o de f ine   t he   ope ra t ing   po in t .   Subs t i t u t -  

i n g   p ( t )   f o r   n ( t )   w i t h   c ( t )  now the  power due to   delayed  neutrons,   the  

k i n e t i c s   e q u a t i o n s   a r e   f o r   t h e   i t h   c o r e  

N 
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S e t t i n g   t h e   d e r i v a t i v e s   e q u a l   t o   z e r o ,   t h e   i n t e r r e l a t i o n  of the   equi l ibr ium 

values  is  

M N 

( 2 . 1 4 )  

The s o l u t i o n   o f   t h e   f i r s t   e q u a t i o n  above f o r  pio and   the   subs t i tu t ion  

of t h e   r e s u l t   i n t o  Eq. ( 2 . 8 )  evaluated a t  the   opera t ing   po in t   y ie lds   the  

value  of Pioo fo r   t he   pa r t i cu la r   ope ra t ing   po in t   chosen .  

The r e a c t i v i t y   f u n c t i o n  p(T) separates   under   the  t ransformations 

of Eq. (2 .12)  i n t o  a constant ,  Eo, represent ing  equi l ibr ium,  and a 

funct ion  of   only  the new va r i ab le s ,  S(x), which  vanishes a t   e q u i l i b r i u m .  

From Eqs. ( 2 . 1 4 )  and ( 2 . 8 ) ,  

N 

Therefore  N 

pioo 
- Gi0 - z %kRk 

k=l ,# i  (2.15) 

where  the Rk are the  pko/pio  or  the "flux tilt" between  the  cores. 
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I f   t h e   c o r e s  are ope ra t ing  a t  t he  same power i n i t i a l l y ,   t h e  Rk are uni ty .  

The k ine t i c s   equa t ions  are t ransformed  using Eqs.  (2.12),  (2.14), 

and  (2.15). The des i r ed  forms arep w i t h   i ( t )   d e f i n e d  as d x ( t ) / d t ,  

M N N 

(2.16) 

I t  is seen   tha t   the   der iva t ives   vanish   a l so   for  all x = -1. T h i s   r e s u l t  

must  hold  because t h i s   p o i n t  is  the   zero   po in t   for   the   un t ransformed 

equations.  

Only the autonomous  system w i l l  be cons idered   in   th i s   s tudy ,  

thus   E i ( t )  w i l l  be zero. Also, in   the   f ree   sys tem,   the   p rope l lan t  mass 

f low  ra te  i s  constant,  an  assumption made previously.  The i n v e s t i g a t i o n  

w i l l  c o n s i s t  of  determining how the  system  behaves when one  or more of 

t he   va r i ab le s   dev ia t e s  from  equilibrium.  This  process i s  i d e n t i c a l ,   i n  

the  l inear  case,   with  examining  the  roots of t he   t r ans fe r   func t ion ,  

which i s  t h e   r a t i o  of the  Laplace  Transforms  of  one of t h e   v a r i a b l e s   t o  

that   of   the   general ized  input   Bi( t ) .   These  points  w i l l  be d iscussed   in  

more d e t a i l   l a t e r .  

I f   t he   ze ro   po in t  of Eqs. (2 .16)   represents   the   o r ig in   o f   an  

n-dimensional  vector  space,   then  each x r ep resen t s  a component of a 

vector  which  completely  describes  the  state  of  the  system. The va r i ab le s ,  
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i n   t h i s  case, are c a l l e d  s t a t e  var iables   and  the  space is  ca l l ed   t he  

s t a t e  space.  The s t a t e   v a r i a b l e s   a r e   n o t   n e c e s s a r i l y   p h y s i c a l l y  

measurable   quant i t ies ,  For example, the  delayed  neutron  precursor  

dens i ty   va r i ab le   xc ( t )   canno t  be r e a d i l y  measured. 

The order   of   the   system is  (N)(M + 2) ,  so i f   t h e r e  were  say 

three   cores  and s i x  groups  of  delayed  neutrons,  the  order  would be 

twenty-four. Even wi th  no delayed  neutrons and only two cores ,   the  

minimum, the   o rder  is  four .  The problem i s  fo rmidab le ,   i f   f o r  no o the r  

reason,  because  of i t s  sheer   s ize .   Experience shows t h a t  any  problem 

g rea t e r   t han   t h i rd   o rde r  is  d i f f i c u l t .  

Eqs. (2.16) do no t   appea r   d i r ec t ly   i n   vec to r   ma t r ix  form as ye t .  

Although t h i s  i s  poss ib le ,  i t  serves  no useful   purpose  for   the  general  

case. Some s p e c i f i c  examples w i l l  be s t a t e d .  Because  one  group  of 

delayed  neutrons  provides  a s u f f i c i e n t l y   a c c u r a t e  model, when delayed 

neutrons  are   considered,  i t  w i l l  be one  group. Also a two-core  system i s  

su f f i c i en t   fo r   pu rposes  of i l l u s t r a t i o n .  

Power P ropor t iona l   Reac t iv i ty  

Using Eq. ( 2 . 1 1 )  f o r   t h e   r e a c t i v i t y ,  

5. + C D X (t) 
P ' O  P 

where a i s  cppo, u sua l ly  a nega t ive   quant i ty .  The k ine t ics   equa t ions  

a re ,   fo r  one  group  of  delayed  neutrons, 



with  x1  and x2 t he  power v a r i a b l e s   f o r   t h e  two cores .  It  would be 

d i f f i c u l t   t o   j u s t i f y   t h i s  example i f  i t  were known p o s i t i v e l y   t h a t   t h e  

delayed  neutron  source  were  of  the same magnitude as the  coupling  source.  

With  the  delayed  neutron  effect  

Xp l ( t )  p ( a l - b l - c 1 2 ) x p l ( t )  + blxc.(t) + c l2xp2( t -T12)+alxpl ( t )  
2 

bu t   i n   gene ra l  

c12 + c21 

al + a2  

because   o f   t he   f l ux   t i l t i ng   f ac to r .  The i n i t i a l  power, it is r eca l l ed ,  
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i s  a f a c t o r   i n   a .   T h e s e   q u a n t i t i e s   a r e   e q u a l   o n l y   i f   t h e  power l eve l s  

a r e   i n i t i a l l y   e q u a l   i n   t h e  two cores.  

These  specific  examples  serve  to  demonstrate  the  longhand  notation. 

The unique  mathematical   features of the  coupled  core  system  are  seen more 

c l e a r   l y  . 
Prope r t i e s  of   the   S ta te   Var iab le  Form 

The choice  of   var iables  makes l i n e a r i z a t i o n  a comparatively  easy 

task.  The va r i ab le s   r ep resen t   f r ac t iona l   dev ia t ions  from equilibrium  and 

the  usual  approach is  t o  assume  such  deviations  to be small. The higher 

order   terms  in   the  equat ions  are   thus  neglected.   For   example,   in  

Eqs .  (2.17), 

2 2 
x+>  = x+) = 0 

A bas ic   ques t ion   of   no ta t ion   a r i ses   here .   For  Eqs.  (2.17)  the 

vec tor   no ta t ion  is 

x ( t )  = Dx(t) + Cx(t-T) + f(x), 
where the   under l ined   var iab les   a re  column vectors.  For  example, 

D i s  the  square  matr ix  

c i s  

0 

- “I 0 
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and f ( x )  - i s  f o r   t h i s  example 

These  forms  are   possible   only  i f   the   delay times between cores  are equal. 

The gene ra l   n th   o rde r   ca se   fo r  Eqs.  (2.17) is 

- x ( t )  = D x ( t )  + C x ( t -T)  I IC + f ( 2 .  - 
D i s  again a square  diagonal   matr ix  

where 
n 

di = a i  - 2 'ik. 
k=l ,#i  

C i s  the  square  matr ix  Cik wi th  Cik z e r o   i f   i = k ,   i n   o t h e r  words, w i th   t he  

diagonal  elements  zero.  I and IC a r e   nit square and column mat r ices  

. 
The uni t   operat ions  e l iminate   the  diagonal   e lements   above  s ince  they 

a re   nonex i s t en t   phys i ca l ly .  
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For  the  higher  order  problems  such as Eq. (2.18) o r  a problem 

wi th   the   t empera ture   e f fec t ,  two o r  more equat ions  descr ibe  each  core .  

It i s  p o s s i b l e   i n   t h i s  case to   a r r ange   t he   equa t ions   i n  many d i f f e r e n t  

ways. It is  e s s e n t i a l ,  however, that   advantage i s  taken  of   the  inherent  

symmetry of  the  system  whenever  possible. 

Aside  f rom  notat ional   considerat ions,   the   outs tanding  feature  

of the   coupled   core   k ine t ics   equa t ions  is  the  t i m e  delay term. The 

va r ious   p rope r t i e s  of equat ions of t h i s   t ype   a r e   d i scussed   i n   t he  

following  chapter.  



Chapter 3 

THE THEORY OF DIFFERENTIAL-DIFFERENCE  EQUATIONS 

In t roduc t ion  and  Notation 

I n   t h e  l as t  sec t ion   of   the   p rev ious   chapter ,  i t  was discovered 

tha t   t he re   cou ld  be some d i f f i c u l t y   i n   a r r i v i n g  a t  a gene ra l   vec to r  

no ta t ion   for   the   equat ions   under   cons idera t ion .  A completely  general  

form for   the   equat ions  i s  

$w  = F(x(s)) ( 3 . 1 )  

f o r  all t >to, where to is  the   ins tan t   a t   which   the   so lu t ion   begins .  to 

w i l l  be c a l l e d   t h e   i n i t i a l   i n s t a n t ,  a f i x e d   f i n i t e  number. 

For   the  i th   e lement   of  Eq. (3.1), F i ( ~ ( s ) )  i s  a func t iona l  whose 

value  depends upon the  values   of   the   funct ion ~ ( s ) ,  where ~ ( s )  includes 

t h e   x i ( s )   f o r  i=l t o  n. The v a r i a b l e  s inc ludes  a l l  t - T  <_ s 5 t, where 

T is  a pos i t ive   cons tan t .   Apply ing   th i s   no ta t ion   to  Eqs. (2.17), 
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En. For  any  vector 2 belonging  to  En, the  norm i s  

where i = 1,""- ,no Also, i f  s lies on t h e  segment a 5 s 5 b i n  En, t he  

n o t a t i o n  

a p p l i e s   f o r  any  function ~(s). ~ ( s )  belongs   to  a c lass   of   cont inuous 

func t ions  from the  segment a <, s 5 b i n  a r eg ion   con ta ined   i n  En. 

The func t ion  F(y(s)) is  cont inuous  in  t i m e  i f  i t  is a continuous 

funct ion  of  time f o r  to 5 t 5 y when y(s) belongs   to   the   requi red  class of 

cont inuous  funct ions  with b = y and a = to-T. F(y(s)) i s  loca l ly   L ipsch i t z  

- with  respect t o  y i f   t h e r e   e x i s t s  a cons tan t  L such   tha t  

Existence  and  Uniqueness  of  Solutions 

I n   t h e   p r e v i o u s   d e f i n i t i o n s   t h e  segment upon which  the  c lass   of  

func t ions  l ies ex tends   t o  t = to-T. The reason i s  t h a t   i f   t h e   f u n c t i o n  

i s  a so lu t ion ,  ~ ( s ) ,  i t  must  depend upon da ta   de f ined   fo r  to-T 5 t <_ t 0 .  

This  i s  t h e   i n i t i a l   d a t a  or i n i t i a l   f u n c t i o n  $(t) .  In   dea l ing   w i th  

o rd ina ry   d i f f e ren t i a l   equa t ions ,  i t  is  s u f f i c i e n t   t o   d e f i n e   a n   i n i t i a l  

value  of  x a t  to, and   t he   so lu t ion   t o   t he   r i gh t  of to depends  only upon 

t h i s   i n i t i a l   v a l u e .  The so lu t ion   o f  a d i f f e r e n t i a l - d i f f e r e n c e   e q u a t i o n ,  

however,  depends upon i n i t i a l   v a l u e s   d e f i n e d   o v e r  a f i n i t e  time and upon 
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t h e   i n i t i a l   i n s t a n t .   T h e r e   c o u l d  be  an i n f i n i t e  number of @(t )s  which 

have  the same value a t  to, e a c h   r e s u l t i n g   i n  a d i f f e r e n t   s o l u t i o n   t o   t h e  

r i g h t   o f  to. Similar ly ,   g iven a @ ( t ) ,   i f  to changes  on  an  absolute t i m ?  

scale, t h e   s o l u t i o n   t o   t h e   r i g h t   o f  to changes. 

The formal   proofs   of   uniqueness   and  exis tence are a v a i l a b l e   i n  

t h e   l i t e r a t u r e  (4,5). An example i l l u s t r a t e s   t h e  problem. The simple 

f i r s t   o r d e r   l i n e a r   d i f f e r e n t i a l - d i f f e r e n c e   e q u a t i o n  

G( t )  = -x ( t -1 )  

i s  considered. The i n i t i a l   f u n c t i o n ,   w i t h  to - 0, i s  

O( t )  - 1 (-1 5 t 5 0). 

The s o l u t i o n  is, f o r  0 < - t 5 1, 

x ( t )  = 1 - t, 

and   ex tend ing   t h i s   t o   t he   i n t e rva l  1 < t 5 2, 

x ( t )  - 1 - t + 1 / 2 ( t - l )  2 

The s o l u t i o n  is, by the   t heo ry   o f   o rd ina ry   d i f f e ren t i a l   equa t ions ,   un ique  

for   each  N-1 5 t <, N. The s tepwise  integrat ion  cont inues  and by induct ion,  

t he   gene ra l   so lu t ion  i s  
i 

Xi(t)  = 1 f z ( - l ) k ( t - k + l )  k 
k= 1 k! 

where  the i t h   i n t e r v a l  is  def ined as 

O < t < l ; i = l  

l S t S 2 ;  i - 2  

and so f o r t h .   I f  
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t h e   s o l u t i o n  is  

and 

x ( t )  = -t + 1 / 2 t 2 ;  0 5 t 5 1 

i 
x i ( t )  = -t + 2 (-l)k+l ( t -k+ l )  

k+ 1 

k= 1 (k+l)  ! 

Figure  3.1 d i sp lays   t hese  two so lu t ions .  From t h e   i l l u s t r a t i o n s ,  i t  is  

seen  that   choosing  the  second  ini t ia l   funct ion  corresponds  exact ly   to  

moving to t o   t h e   r i g h t  by one i n t e r v a l .  The s o l u t i o n   t o   t h e   r i g h t   o f  

to changes i n   e i t h e r   c a s e .  

S t a b i l i t y  of Di f fe ren t ia l -Dif fe rence   Equat ions  

Because  the  system i s  autonomous, on ly   a sympto t i c   s t ab i l i t y  

w i l l  be considered.  Physically,   the  system i s  a s y m p t o t i c a l l y   s t a b l e   i f  

when per turbed from the   equ i l ib r ium  s t a t e ,  i t  r e tu rns   t o   t he   equ i l ib r ium 

s t a t e .  The s t a b i l i t y   p r o p e r t y   f o r   e q u a t i o n s   w i t h   t i m e   d e l a y  i s  s t a t e d  

in   t he   fo l lowing   de f in i t i on .  

Def in i t i on  ~- ~ - . 3.1 Asympto t i c   S t ab i l i t y  

The o r i g i n   o f  Eq. (3.1) i s  s t a b l e   i f  fo r  every E> 0 there  

e x i s t s  a 6 > 0 such   t ha t  when 

the   i nequa l i ty  

holds   for  a l l  t >to. If i n   a d d i t i o n  t o  these   condi t ions ,  
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FIG. 3.1 SOLUTION OF f ( t ) = - x ( t - l )  



f o r   a l l   i n i t i a l   f u n c t i o n s  

t h e n   t h e   o r i g i n   o r   n u l l   s o l u t i o n   ( x  = 0) is  asymptot ica l ly  

s t a b l e .  

This  means t h a t  a l l  s o l u t i o n s   s t a r t i n g   i n  a region of En, def ined by h, 

remain   in  a region HI and  approach  the  or igin as time goes t o   i n f i n i t y .  

Def in i t i on  3.1 i s  the re fo re   no t   un l ike   t he   de f in i t i on   o f   a sympto t i c  

s t a b i l i t y   f o r   o r d i n a r y   d i f f e r e n t i a l   e q u a t i o n s .  The d i f f e rence  i s  t h a t  

t h e   i n i t i a l   f u n c t i o n s   i n s t e a d  of i n i t i a l   p o i u t s   c o n f i n e   t h e m s e l v e s   t o  

the  region Ho. 

De f in i t i on  3.1 may a c t u a l l y  be too   gene ra l   i n   t ha t  a l a rge  

c l a s s   o f   i n i t i a l   f u n c t i o n s  i s  admit ted.   Considerat ion  of   only a r a t h e r  

r e s t r i c t e d   c l a s s  of funct ions  might   lead  to  a b roade r   app l i cab i l i t y   o f  

s t ab i l i t y   cond i t ions   i n   p rac t i ca l   p rob lems .  However, Krasovski i  (8) 

shows r igo rous ly   t ha t  a s a t i s f a c t o r y   r e s t r i c t i o n  i s  t h a t   @ ( t )   s a t i s f i e s  

a Lipschi tz   condi t ion .   This   a l lows  a s u f f i c i e n t l y   l a r g e  number of @ ( t )  

espec ia l ly   in   the   p rac t ica l   case   under   cons idera t ion   where   an   in f in i te  

d i s c o n t i n u i t y   i n  t h e  i n i t i a l   f u n c t i o n  would not  be expected. 

The Zeros of .- the   Charac te r i s t ic   Equat ion  

I f  Eq. (3.1) is l i n e a r  and r ewr i t t en  as 

where x denotes  the  Laplace  transform.  H(p) is t h e   c h a r a c t e r i s t i c  

equat ion .   Wi th   zcro   in i t ta l   condi t ions  on t h e   x i ( t ) ,   t h e   r o o t s  of  H(p) 

a re   t he   po le s  of the   Laplace   t ransform  so lu t ion   of   x ( t ) .   Pos i t ive   roo ts  
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i nd ica t e   exponen t i a l ly   i nc reas ing   so lu t ions   and   nega t ive   roo t s   i nd ica t e  

exponent ia l ly   decreas ing   so lu t ions .   Therefore ,  a cond i t ion   fo r  

a s y m p t o t i c   s t a b i l i t y  i s  t h a t  a l l  the   zeros  of H(p) are n e g a t i v e   i n   t h e  

r e a l   p a r t .   I n   g e n e r a l ,  H(p) = H(p,eP) s i n c e  x (x(t-T)=X(p)e-PT.  These 

func t ions   a re   ca l led   exponent ia l   po lynomia ls .  The s t a b i l i t y   c r i t e r i a   f o r  

exponent ia l   po lynomia ls   a re   s ta ted  by Bellman ( 2 ) .  

H(p) is  mul t ip l i ed  by a s u f f i c i e n t  power of epT t o   e l i m i n a t e   a l l  

nega t ive   exponent ia l   t e rms .   I f   the   p roduct   o f   the   h ighes t   o rder   o f  p and 

of epT  does n o t   a p p e a r ,   t h e r e   a r e   a n   i n f i n i t e  number of   roo ts   wi th  

a r b i t r a T i l y   l a r g e  rea l  par t s .   This   p roduct  is c a l l e d   t h e   p r i n c i p a l  term 

whose absence   ensures   ins tab i l i ty .   This  i s  scen  in  the  following  example.  

and 

p = + j w .  

So lv ing   fo r  H(p) = 0, 

cosw = "e-" 

e" = w/sinw. 

I f  ,-, i s  a r b i t r a r i l y   l a r g e ,  cosw approaches  zero,   or w = 2nlr + 1/2lr. 

Then from the  second  equat ion,   s ince  s inw  approaches  uni ty ,  

= loge(2nlr + 1/2n). 

Thus 0 i s  a r b i t r a r i l y   l a r g e  and p o s i t i v e  as n increases .  The s t a b i l i t y  

c r i t e r i a   a r e   s t a t e d   i n  Theorem 3.1. 

Theorem 3.1 S c a b i l i t y   C r i t e r i a   f o r   L i n e a r   D i f f e r e n t i a l -  
Difference  Eauat ions from t h e   C h a r a c t e r i s t i c  
Equation 

H(p) i s  an  exponential  polynomial  with a p r i n c i p a l  term. 

p = j w  and  H(jw) i s  sepa rab le   i n to  F ( w )  + jG(w). Iil o r d e r   t h a t  
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the   zeros   o f  H( j,) l i e  t o   t h e   l e f t  of the  imaginary  axis 

(have  negative real  p a r t s )   c o n d i t i o n   ( a )  cr (b)  must be 

. s a t i s f i e d :  

( a )  The zeros  of  F(w) are real .   and for each  zero, wof 

dF(wo) . G(w)< 0. 
d w  

(b)  The zeros  of G(w) a r e   r e a l  and for each  zero, wo, 

dG(wo) . F(wo)> 0. 
d w  

The f i r s t   o r d e r   e q u a t i o n  

G(t) = - a x ( t )  - bx(t-T) ( 3 . 3 )  

w i l l  be examined v i a   t h e  Second Method of  Liapunov, so i t  i s  convenient 

t o   u s e   t h i s  example  and ob ta in   t he   exac t   r e su l t .  The c h a r a c t e r i s t i c   i n  

the  proper  form i s  

pepT + epT + b = 0. 

The presence of the   p r inc ipa l   t e rm i s  noted.  Condition ( b )  of Theorem 

3.1 i s  appl ied.  

F = -8s in0  + aTcos0 -t.  bT 

G = BcosQ + aTsinQ 

dG/dw = -0s inQ + cos0 + aTcos0 

where 8 = wT. 0 = 0 is  a roo t  of G, so 

aT > -bT. 

For a l l  other   roo ts ,   the   paramet r ic   equa t ions   a re ,  

aT = -ecote  

bT<+ (8’ + (aT) 2 ) 1 / 2  . 
An approximate  answer  resul ts   i f   the   lowest   order  Pade approximant (18) 

is used.  e-PT=(2-pT)/(2 + pT). 



The Routh Test is app l i ed   t o   t he   r e su l t i ng   cha rac t e r i s t i c ,   and   t he   r ange  

o f   p a r a m e t e r s   f o r   s t a b i l i t y  is, 

aT> -bT 

bT < 2 + aT 

which is an  overest imate .   These  resul ts  a p p e a r  in   Figure  3 .2 .  

From the   so lu t ion  to  Equation (3.2)  i t  could be reasoned  that  

t he re   p robab ly   ex i s t s  some value  of  the  delay time f o r  which  the  system 

becomes uns tab le .  The s e r i e s  form  of   the  solut ion  approaches  that   for  a 

s imple   nega t ive   exponent ia l   so lu t ion   for  a su f f i c i en t ly   sma l l   va lue   o f  

the  delay.  The exact   value can be found  from Theorem 3.1. 

The s t a b i l i t y   q u e s t i o n  w i l l  be pursued  fur ther   in   terms of 

Liapunov's  Second Method in   t he   nex t   chap te r .  
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Chapter 4 

LIAPUNOV'S  SECOND METHOD FOR SYSTEMS WITH TIME DELAY 

Review of  the  Second Method for  Ordinary  Systems 

The idea  of   the Second o r   D i r e c t  Method of  Liapunov is t o  

d e t e r m i n e   s t a b i l i t y   f o r  a system  without a knowledge  of t h e   s o l u t i o n s  of 

the  system. The too l   for   accompl ish ing   th i s  i s  the  Liapunov  function 

v(x) ,  a s ca l a r   func t ion  o f   t h e   v e c t o r   x ( t )   f o r   t h e   g e n e r a l  autonomous 

sys  tem 
- ;( t )  = A(x)x( t ) .  

v (x)  i s  a p o s i t i v e   d e f i n i t e   f u n c t i o n ,   t h a t  is ,  i t  has   the  propert ies  

( a )   v (5 )  is  con t inuous   w i th   con t inuous   f i r s t   pa r t i a l s   i n  a 
region H about   the  or igin  of  En, 

(b )   v (0)  = 0, 

( c )   v (2 )  i s  p o s i t i v e   i n  H excep t   a t   t he   o r ig in .  

A l s o ,  v(xJ-+ w a s  IC a. This   ensures   tha t   v (x)  = a cons tan t  

r ep resen t s  a se r ies   o f   c losed   sur faces   about   the   o r ig in .  The s t a t e   o f  

the  system l ies  on success ive ly   sma l l e r   v (2 )   t oward   t he   o r ig in   i f   t he  

system i s  asymptot ica l ly   s tab le .   Accord ingly ,   the   bas ic   s tab i l i ty  

theorem i s  : 

Theorem 4.1 Asymptot ic   S tab i l i ty  

I f   t h e r e   e x i s t s   i n  some region H abou t   t he   o r ig in   o f  En 

a Liapunov  function  v(x),  and i f  ;(x) i s  n e g a t i v e   d e f i n i t e   i n  

H, t h e   o r i g i n  is  a sympto t i ca l ly   s t ab le .  

The region H could be a r b i t r a r i l y   l a r g e   i n  which  case  the  system i s  

g l o b a l l y   a s s y m p t o t i c a l l y   s t a b l e .   I n  many nonlinear  problems,  however, 
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H is f i n i t e .  

S e l e c t i n g  a s u i t a b l e   v ( 2 )   f o r  a given  problem i s  of  importance, 

and   severa l   methods   a re   ava i lab le   for   accompl ish ing   th i s   t ask .  A bas i c  

v ( 5 )   f o r  Eq. (4.1) i s  the   quadra t i c  form 

n 

;(IC) must be nega t ive   de f in i t e ,  a condi t ion  reached by p rope r   s e l ec t ion  

of   the  aijs .  Sy lves t e r ' s  Theorem gives   the   condi t ions   for   the   pos i t ive-  

d e f i n i t e n e s s   o f  Eq. (4.2).   This w i l l  prove  useful  la ter .  

Theorem  4.2 Sign  Defini teness   of  a Quadrat ic  Form 
n 

The func t ion  Z ai jxixj  i s  p o s i t i v e   d e f i n i t e   i f   t h e  

successive  principal  minors  of  the  symmetric  determinant 

lai I a r e   p o s i t i v e .  

i, j=1 

A second  order  example i s  

which by Theorem 4.2 i s  p o s i t i v e   d e f i n i t e   i f  

all > O 

2 
a l l a 2 2  - a12 > O 0  

A usefu l   approach   for   ob ta in ing   the  a i j  fo r   t he   l i nea r   ca se  i s  

t o   c o n s t r a i n  ;(IC) a long   so lu t ions   o f   the   sys tem  to  be 

n 2  - z Xi(t) .  
i= 1 

For a nonlinear  problem,  this  approach is  used   fo r   t he   l i nea r i zed  

equat ions,   then +(IC) i s  found  a long  solut ions of Eq.  (4.1).   This  leads 
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t o   a n  estimate o f   t h e   s i z e   o f   t h e   r e g i o n  H i n  which  the  system is 

a sympto t i ca l ly   s t ab le .  

Extension  of  the  Second Method t o  Time Del= Systems 

To i l l u s t r a t e   t h e   d i f f i c u l t i e s   i n v o l v e d  i;~ t h i s  problem,  an 

at tempt  i s  made to   ex t end   t he  Second Method d i r e c t l y   t o  t h e  f i r s t   o r d e r  

system ( 3 . 3 ) .  v(2)  i s  chosen t o  be 

v(2)  = x 2 ( t >  

so ;(x) = 2 x ( t ) i ( t )  = -2ax ( t )   - 2 b x ( t ) x ( t - T ) .  2 

The methoc 

( 4 . 3 )  

( 4 . 4 )  

3 f a i l s .  No conclusion  can be  drawn as t o  t h e   s i g n   d e f i n i t m e s s  

of E q .  ( 4 . 4 ) .  An examination  of  Figure 3.2, however, r e v e a l s   t h a t   t h e  

system i s  indeed   a sympto t i ca l ly   s t ab le   fo r  a known range  of  parameters.  

An idea   fo r  a new method comes from the  funct ional   system 

rep resen ta t ion  
i ( t )  = F(x(s)) ( 4 . 5 )  

A natura l   approach  i s  t o   s e e k  a func t iona l  V(x(s)) of the vec tor  ~ ( s )  f o r  

t - T  5 s .g t r a the r   t han  a func t ion   v (x ( t ) )   o f   t he   vec to r  - x ( t ) .  The 

func t iona l  w i l l  be c a l l e d  V(x). 

The Liapunov  Functional 

Severa l   au thors  examine t h e   s t a b i l i t y   o f  Eq. ( 3 . 3 )  by use of the  

func t iona l  

V(x) = x ( t )  + a 2 x2(s)   ds .  J t -  

A more general  form is  

118 



where p is  a cons t an t .   Th i s   pa r t i cu la r   func t iona l  form is due KO 

Krasovskii .   Apparently some experience is  requi red   in   choos ing  a proper 

f u n c t i o n a l   j u s t  as i t  is  in   choos ing  a Liapunov  function. The bas ic  

Liapunov  approach is unchanged, so i f  V(2) is  p o s i t i v e   d e f i n i t e  and V(x) 
i s  n e g a t i v e   d e f i n i t e   a l o n g   s o l u t i o n s  of E q .  (4.5),  the  system is s t a b l e .  

V(x) - is p o s i t i v e   d e f i n i t e ,   i n   f a c t ,  

i f  p >O , where pT l / x (s )  11 is  t h e   l a r g e s t   v a l u e   t h e   i n t e g r a l  
2 t - T ,  t 

assumes i n  s .  D i f f e r e n t i a t i n g  Eq. (4.6), 

;(x) = 2x( t )G( t )  + px 2 ( t )  - px 2 ( t -T) ,  

and  from Eq. ( 3 . 3 ) ,  

V ( 5 )  = -(2a - p)x ( t )  - 2bx( t )x( t -T)  - px (t-T). ( 4 . 8 )  
2 2 

E q .  (4 .8 )  i s  a quadra t i c  form i n   x ( t )  and  x(t-T),  so from Sy lves t e r ' s  

Theorem, V(x) i s  n e g a t i v e   d e f i n i t e   i f  

The maximum value o f  (b)   occurs  when p =I a,  and  since p must be > 0, 

a a l s o  i s  > 0. The range   of   parameters   for   asymptot ic   s tab i l i ty  i s  

the re fo re  

a2 - b2 > U, 

o r  
a > lb l ,  a > 0. (4.9) 

This   reg ion  i s  shown, along  with  che  exact  boundaries,   in  Figure  4.1,  

From the   obse rva t ions   above ,   t he   bas i c   s t ab i l i t y  theorem is  

modified as follows. 
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Theorem 4.3 Asymptot ic   S tab i l i ty   o f  a System  With  Delay 
Via a Liapunov  Functional 

I f   f o r   t h e   r e g i o n  z(s)<H and t 2 0, for   the   sys tem ( 4 . 5 ) ,  

t h e r e  exis ts  a func t iona l  V(~(S) s u c h   t h a t  

( a )  V ( 0 )  = 0, 

( b )  V(z( s ) )  i s  cont inuous  in  time and  local ly   Lipschi tz  
w i t h   r e s p e c t   t o  ~ ( s ) ,  

( c )   V(x ( s ) )  2 w(x( t ) ) ,  where w is  a posi t ive  cont inuous 
f u n c t i o n   i n  H, 

(d )  V ( ~ ( S ) )  ,< -w,(x(t))   along  solutions  of  the  system, 
where w 1  is  a pos i t ive   cont inuous   func t ion   in  H, 

then  the  system i s  a sympto t i ca l ly   s t ab le   fo r  t> 0 as def ined 

i n   D e f i n i t i o n  3.1. 

Condit ion  (b)   implies   cont inui ty   of  V ( 2 )  w i t h   r e s p e c t   t o  ~ ( s ) ,  o r   t h e  

ex i s t ence  of t h r   d e r i v a t i v e  V ( 2 ) .  Condit ion  (c)   def ines  V ( 2 )  a s   p o s i t i v e  

d e f i n i t e ,  and  Condi t ion  (d)   def ines  V ( 2 )  as   nega t ive   de f in i t e .  The 

func t iona l  ( 4 . 6 )  meets a l l   t h e   r e q u i r e m e u t s   s t a t e d   i n  Theorem 4 . 3  i f   t h e  

condi t ions  ( 4 . 9 )  a r e   t r u e .  The func t ion   w(x ( t ) )  i s  x ( c ) .  The func t ion  2 

( ~ ( t ) )   e x i s t s ,   b u t  i t  i s  convenienL to   de te rmine   nega t ive   def in i teness  
1 -  

by use   o f   Sylves te r ' s  Theorem. 

From Eq. (4.7), V(2) a l s o  has  an  upper bound. The condi t ion 

could   rep lace   Condi t ion   (a )   in  Theorem 4 .3 .  I n e q u a l i t y  (4.10) i s  a 

s t ronger   condi t ion  than  (a)   and  the  exis tence  of   the  funct ion W l eads   t o  

the   conclus ion   of   un i form  asymptot ic   s tab i l i ty .   I f  a system is uniformly 

a sympto t i ca l ly   s t ab le ,  i t  is  s t a b l e   i n   t h e   s e n s e   o f   D e f i n i t i o n  3.1, 
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independent  of to. Driver  ( 4 )  proves  the  uniform  property of t he  

s t a b i l i t y   u n d e r   t h e s e   c o n d i t i o n s .  

The func t iona l   o f  Eq. (4.6) for   the  ger leral   n th   order   system 

would be 

where  the  subscr ipts  i and j i n d i c a t e   t h a t   t h e   i t h   e q u a t i o n  may conta in  

a l l   t he   va r i ab le s   w i th   a rgumen t s   de l ayed  by severa l   t imes  Ti j .  The 

func t ion   v(2)  i s  the  normal  Liapunov  function  for  the  system  with a l l   t h e  

delayed terms zero. 

The Liapunov  Function  for Time Delay  Systems 

The o r i g i n a l   a t t e m p t   t o   s o l v e   t h e   s t a b i l i t y  problem  using a 

Liapunov  function  failed  because  ;(x) was n o t   n e g a t i v e   d e f i n i t e   i n  

Eqs. (4 .3)  and (4.4).  The s o l u t i o n  to Eq. ( 3 . 3 )  is ,  by s tepwise 

i n t e g r a t i o n  and  induction, 

x n ( t )  =I ( -b /a>n 

n n 
+(1 + b/a)  Z C (-l)k-l(t-(k-l)T)l-r(b)l-l(b/a) e k - j  -a ( t - (k-1)T)  

k = l  j=l ( j - l ) !  

f o r   t h e  segment  (n-l)T 5 t 5 nT, and f o r   $ ( t )  = 1. The so lu t ion   appears  

i n   F i g u r e  4.2 f o r  a e: b = T = 1. The s o l u t i o n   e x h i b i t s   a n   o s c i l l a t o r y  

behavior  which  appears  only  for  the  second  order  system  of  ordinary 

d i f f e r e n t i a l   e q u a t i o n s .  With time delay,   v(x)  - i o r   t h e   f i r s t   o r d e r   s y s t e m  

i s  x 2 ( t )  which a l s o   o s c i l l a t e s ,  so ;(x) - i s  p o s i t i v e   f o r   c e r t a i n   t i m e s .  

The func t iona l  and  function and t h e i r   d e r i v a t i v e s   a r e   p l o t t e d   i n   F i g u r e  

4.3 f o r   t h i s  example.   This   f igure  a lso  demonstrates   that   the   funct ional  

i s  the   na tu ra l   app roach   t o   t he  problem. 
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Despi te   the  apparent   inconsis tencies ,   the   system is known t o  be 

a sympto t i ca l ly   s t ab le   no t   on ly  due to   p rev ious   cons idera t ions ,   bu t  a l so  

due t o   i n t u i t i v e   f e e l i n g s   r e s u l t i n g  from  an  examination of F igure  4.2. 

The sys tem  appears   to  be r e tu rn ing   t o   equ i l ib r ium.  The following Lema 

sets fo r th   an   add i t iona l   cons ide ra t ion .  

Lemma 4.1 Asymptot ic   Propert ies   of   v(5)  

For a l l   i n i t i a l   f u n c t i o n s   l i @ ( t )  11 5 HOJ l e t  

IIx(s)ll < H f o r  a l l  to 5 t < m. A f u n c t i o n   v ( x ( t ) )  is  

bounded uniformly  for  a l l  11 x ( t )  11 < H, t 2 to. Suppose t h a t  

v (z ( t ) )   has   t he   p rope r ty   t ha t   fo r  some y >yo t h e r e   e x i s t s  Q(y), 

8(y)>O such   tha t   a long   so lu t ions  of izhe system, Sup V(x)< -a(y) 
f o r  t 2 to + B(y) f o r   a l l   s o l u t i o n s   s a t i s f y i n g  v(2) ( 0 ) )  5 y. 

Then 

t " + m  
lim SUP v ( x ( @ , t o ) )  5 Yo 

independent of @ ( t ) .  

This  means t h a t   t h e r e  i s  some t >to + B(y) beyond  which v(x)  - decreases  

monotonically. The idea i s  incorpora ted   in to  a theorem. 

Theorem 4.4 Asymptot ic   S tab i l i ty   o f  a System  With  Delay  Via 
a Liapunov  Function 
~" 

I f   f o r   t h e   r e g i o n   I l z ( t )  11 < H and t > - -T for   the  system 

(4.5) t h e r e   e x i s t s  a func t ion   v (x ( t ) )   such   t ha t  

( a )   v (x )  5 W ( 5 )  where W i s  cont inuous   in  H and W(0) = 0, 

(b)  v (5)  i s  cont inuous  in  time and   loca l ly   L ipschi tz   wi th  
r e s p e c t   t o  2, 

( c )  v(2)  2 w(2)  where w i s  cont inuous  and  posi t ive  (v  is 
p o s i t i v e   d e f i n i t e ) ,  
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( d )   t h e r e   e x i s t s  a cont inuous   func t ion   f ( r )>  r f o r  
a l l  r >O and a pos i t ive   cont inuous   func t ion  
wl(x)> 0 such   t ha t  

;(x) 3 -wl(x)   (nega t ive   de . f in i te )  

f o r  t 2 0, and 

v ( x ( s ) )   < f ( v ( x ( t ) ) )   f o r   a l l  t - T  _< s _< t 

then  the  system is uni formly   asymptot ica l ly   s tab le   for  t X. 

I f   Cond i t ion   ( a )  is  r e l axed   t o   v (2 )  = 0, the   conclus ion  is asymptotic 

s t ab i l i t y .   Cond i t ion   (d )   r equ i r e s   t ha t   t he   func t ion   v (x )  is  decreasing 

mono ton ica l ly   t o   t he   r i gh t   o f  to + 0, in   accordance  with Lemma 4.1. 

As an  example, f o r  Eq. (3.3),   v(x) i s  aga in  x ( t )  and 2 - 

;(x) = -2ax 2 ( t )  - 2bx( t )x( t -T) .  

f ( v )  w i l l  be v/q  where o< q< 1. Then by Theorem  4.4, 

x2( t -T)<  x2( t ) /q   (4 .12)  

leads  to   the  conclusion 

;(x) 5 -2(a - Ib l /q ' /2)x2(r) .  (4.15) 
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The r i g h t  hand s ide   o f   inequal i ty   (4 .15)  is n e g a t i v e   d e f i n i t e   i f  

a > O  

or 
a 2 ( b l ;  a> 0 

s i n c e  q1j2 can be a r b i t r a r i l y   c l o s e   t o   u n i t y .   T h i s  i s  the  same r e s u l t  as 

tha t   ob ta ined  by use  of   the   funct ional .  

A Differen t   Funct iona l  Form f o r   t h e  System  Equations 

I f  a sys t em  o f   o rd ina ry   d i f f e ren t i a l   equa t ions  is  w r i t t e n   i n  a 

d i f f e r e n t  form, a d i f f e r e n t   s t a b i l i t y   r e s u l t  i s  found i f  t he  same 

Liapunov  function i s  used.  For  example, i f   t he   sys t em is 

i l ( t )  =I -ax,( t )  - bx2( t )  

~ 2 ( t )  = - c x , ( ~ )  - dxl(L) 

the   equat ions  may be r e w r i t t e n   i n  che  phase  variable  form 

f ( t )  + ( a  + c ) i ( t )  + ( ac  - bd)x( t )  = 0 

o r  
;c,(t> = 

;2( t )  = - ( a  + c ) x 2 ( t )  - ( ac  - b d ) x l ( t ) .  

2 
=I - ax l ( t )  - (ab  + c d ) x l ( t ) x 2 ( t )  - c x 2 ( t )  2 

'(2)4.16 

+ ( ~ ) 4 . 1 7  = - ( a c  - bd - l ) x l ( t ) x 2 ( t )  - ( d  + c ) x 2 ( t ) .  

(4.16) 

(4.17) 

'(2)4* 16 i n d i c a t e s   s t a b i l i t y   f o r  

a > o  

ac - ( ab  + cd) /4  > 0. 
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GW4.17 i s  i n d e f i n i t e ,  so no  conclusion on s t a b i l i t y   r e s u l t s .  The 

resu l t ing   ranges   o f   parameters   can  be super imposed   in   th i s  method t o  

perhaps  yield  an  answer  which is  b e t t e r   t h a n   e i t h e r   i n d i v i d u a l   r e s u l t .  

This   idea   can   be   ex tended   even   to   the   f i r s t   o rder   case   for  

d i f f e ren t i a l -d i f f e rence   equa t ions .  The equat ions are r ewr i t t en   u s ing   an  

i n t e g r a l   r e p r e s e n t a t i o n  

x( t -T)  p x ( t )  - k(s )ds .  
t -  

(4.18) 

Eq. ( 3 . 3 ) ,  as   an example, takes  the  form 

x ( t )  = - ( a  + b)x ( t )   - ab   x ( s )ds  -b2  tx( s -T) ds 
t -   t -  (4.19) 

i f  Eq. (4 .18)   replaces   x( t -T) .   I f   v(5)  = x ( t ) ,  2 

;(IC) = -2(a + b ) x 2 ( t )   - 2 a b   s ( s ) x ( t ) d s  - 2b2 
t -  t -  

(4.20) 

Under the  condi t ions  of  Theorem  4.4, t h e   i n t e g r a l s   i n  Eq. (4.20)  must be 

l e s s   t han   t he  maximum va lue   o f   t he   i n t eg ra l   ove r  t - T  5 s 5 t ,  which i s  

The cons tan t  q is d i f f e r e n t   f o r   e a c h   i n t e g r a l ,  and for  expediency,  each 

w i l l  be assumed t o  be uni ty .  It i s  r e c a l l e d   t h a t  q may  be a r b i t r a r i l y  

c lose   t o   un i ty .  

Inequality  (4.20) is, therefore ,  

;(x) " < -2 ( ( a  + b) - lablT - b2T)x2(t) ,  (4.21) 
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which  consis ts   of  two casesy  

The r igh t   s ides   o f   t he   i nequa l i t i e s   (4 .22 )  are n e g a t i v e   d e f i n i t e   i f  

( a )  aT >Oy 0<bT <1 

(b)  -bT(1 - bT)/( 1 + bT)< aT <Oy b >O. 
(4.23) 

The Regions  (4.23)  appear  in  Figure 4.4. T h i s   r e s u l t  is  combined wi th  

the   p rev ious   r e su l t  a >I bl,  and  compared wi th   t he   exac t   r e su l t .  The 

answer is considerably improved  and reasonably  c lose to the  exact  answer. 

The maximum value  of -aT i n  Eq, (4.23,b)  occurs a t  b = f i  - 1 and 

-aT= 2 J 2  - 3. 

Conclusions 

The s i m p l e   f i r s t   o r d e r   l i n e a r  example  used  here i l l u s t r a t e s   t h e  

mechanics  of  the  method. The dec i s ion   t o  be made i s  whether   to   use  the 

functional  or  function  approach.  While  the  Liapunov  functional i s  the  

na tu ra l   t oo l ,   t he   func t ion  seems t o  l e a d   t o   b e t t e r   r e s u l t s   w i t h  a 

minimum of e f f o r t   i n   t h e  problem  examined. 

New resu l t s   cou ld  be achieved  through  the  choice  of a new 

func t iona l  form. It i s  d i f f i c u l t   t o   g u e s s   j u s t  what  form  would be useful .  

Krasovskii   has  introduced a func t iona l   i nvo lv ing  a double   in tegra t ion  

which, f o r  Eq. (3.3) y i e l d s  a region 

aT>O,  O<bT<l .  

Due to   t he   ex t r a   man ipu la t ions ,   t h i s   app roach  i s  no t   i n t e re s t ing   excep t   i n  

cases   in   which a l l  t he   va r i ab le s   excep t   t he   de r iva t ive  have the   r e t a rded  
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I 

argument. In   t h i s   ca se   t he   ' f unc t iona l   u sed   he re   f a i l s   t o   so lve   t he  

problem. 

Razumikhin (13) has   a r r ived   a t   t he   r eg ions   i n   F igu re  4.4 by a 

s l igh t ly   d i f fe ren t   approach .  Only t h e   r e s u l t s   a r e  g3ven in   h i s   paper ,  

and  his   f igures   are   grossly  exaggerated  and  overopt imist ic .   In   the same 

paper,   Razumikhin  gives  the  results  of a th i rd   o rder   l inear   p roblem.  

These r e s u l t s   a r e  somewhat sketchy,   but   this  i s  the   mos t   d i f f i cu l t  

problem  worked i n   t h e   l i t e r a t u r e .  
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Chapter 5 

FURTHER STUDY 

The next  s t e p  is  t o   a p p l y   t h e s e  methods t .o t he  cou .ed  co r e  

reactor   system  equat ions.  Some linear  problems w i l l  be worked us ing   the  

Second Method, and   the   resu l t s  compared to   t he   exac t   so lu t ions .   Th i s  

w i l l  demonstrate   the  usefulness   of   the  Second Method i n   s o l v i n g   l i n e a r  

time  delay  problems. 

A method w i l l  be developed  to   deal   wi th  the  nonl inear   system. 

It i s  f e l t   t h a t  a su i tab le   approach  would be t o   f i n d  Liapunov  functions 

fo r   t he   l i nea r i zed   sys t em,   t hen   t o   e s t ima te   t he   r eg ion   o f   s t ab i l i t y  by 

c a l c u l a t i n g  v a long   so lu t ions  of t he   non l inea r   sys t em.   S t ab i l i t y   r e su l t s  

w i l l  be given  in   terms  of   the  parameters   of   interest   (delay  t imes,  

coupl ing   coef f ic ien ts ,  and f l u x  t i l t)  and in   terms of the  regions  of 

s t a b i l i t y   i n   t h e   s t a t e   s p a c e .  
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SECTION 111 

SYNTHESIS O F  OPTIMAL CLOSED-LOOP CONTROL FOR NUCLEAR ROCKET SYSTEMS 

Chapter 1 

SYNTHESIS  OF  OPTIMAL  CLOSED LOOP CONTROL FOR NUCLEAR 
REACTOR SYSTEMS 

Theory 

A number of  papers i n  recent  years  have  discussed  the 

determinat ion of an   op t imal   cont ro l   for   nuc lear   reac tor   sys tems  1 ,2 ,3 ,4*  

The opt imal   input   cont ro l   vec tor   and   the   op t imal   ou tput   s ta te   vec tor   a re  

computed using  Pontryagins 's  Maximum Principal5  for  rhe  given  performance 

c r i t e r i a .  The r e su l t i ng   con t ro l   sys t em  typ ica l ly   ope ra t e s  open  loop  and 

thus w i l l  be q u i t e   s u s c e p t i b l e   t o  any i n t e r n a l   n o i s e   o r   e r r o r s  due t o   t h e  

non-exact  mathematical   description  of  the  system.  In  order  to  reduce  the 

e f f e c t  of these   d i s turbances  on the  optimum s y s t e m   s t a t e - t r a n s i t i o n  

t r a j e c t o r i e s ,  i t  i s  des i rab le   to   de te rmine  a c losed   loop   cont ro l le r .  

The f ami l i a r   neu t ron   k ine t i c s   equa t ions   o f  a reactor  system, 

which i n   g e n e r a l   a r e   n o n l i n e a r ,   a r e   d e s c r i b e d   i n   s t a t e   v a r i a b l e   n o t a t i o n  

by f i r s t   o r d e r   d i f f e r e n t i a l   e q u a t i o n s  of the  form 

., - 
x = f (x ,   u)  
" - 

where x i s  the s t a t e  vector  and u the   con t ro l   vec to r .  When random 
- 

d i s tu rbances   a r e  added to  the  system  the  problem  of  determining  the 

optimum con t ro l   t hen  becomes one of a s t a t i s t i c a l   n a t u r e .  

Fo r   l i nea r  dynamic  systems,  the well known Wiener f i l t e r  was 

developed by Wiener to  handle  such a s t a t i s t i c a l  problem.  Because  the 
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Wiener  problem is solved  in   the  f requency domain, a number o f   l imi t a t ions  

c u r t a i l  i t s  usefu lness .  

(1) The o p t i m a l   f i l t e r  is s p e c i f i e d  by i t s  impulse  response,  and 
t h e   t a s k   o f   s y n t h e s i z i n g   t h e   f i l t e r  from such  data  is no t  
easy. 

( 2 )  Numerical  determination  of  the  optimal  impulse  response is  
o f t en   qu i t e   i nvo lved  making  machine  computation d i f f i c u l t .  

( 3 )  Impor tan t   genera l iza t ions   requi re  new derivat ions  which may 
be d i f f i c u l t   t o   t h e   n o n s p e c i a l i s t .  

R.  E .  Kalman and R.  S .  Bucy7j8 in   r ecen t   yea r s  have  taken  the 

Wiener f i l t e r  problem i n  i t s  en t i re ty   ou t   o f   the   f requency  domain, 

r e s t a t i n g  i t  in   the   t ime domain. This  new a p p r o a c h   t o   l i n e a r   f i l t e r i n g  

has   vir tual ly   e l iminated  the  major   l imitat ions  associated  with  the  Wiener  

approach,  making  synthesis by machine  computation  both  feasible  and 

r e l a t i v e l y  s i m p l e .  T h i s   f a c t  i s  demonstrated by a number of  problems t o  

which this   approach  has   been  appl ied  s ince  the  appearance of re ferences  

(7) and (8)  
9,10,11,12 . The theory  has  been  labled  the  "Linear O p t i m a l  

Stochastic  Control  Theory. ' '  

As s ta ted   p rev ious ly ,   the   nuc lear   reac tor   sys tems  cons idered   in  

t h i s   s t u d y   a r e   d e s c r i b e d  by s e t s   o f   n o n l i n e a r   f i r s t   o r d e r   d i f f e r e n t i a l  

equa t ions .   In   o rde r   t o   app ly   l i nea r  op:imal s t o c h a s t i c   c o n t r o l   t h e o r y ,  

the  equations  must be made compatible   with  the  theory.   This  i s  

accomplished by making piecewise  l inear   approximations  about   the 

predetermined  opt imal   t ra jector ies .  The r e s u l t i n g   p i e c e w i s e   l i n e a r  

d i f f e ren t i a l   equa t ions   desc r ib ing   pe r tu rba t ions   abou t   t he  optimum path  

are  t ime  varying  and  take  the form 
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where E is  a small   per turbat ion  about   the  opt imal   output   vector  To 

i e  6x = x -  X 0  
- - -  

and is a small per turba t ion   about   the   op t imal   input   cont ro l   vec tor  uo 

i e  tju - u - uo 
" -  

For  convenience E q .  ( 1 . 2 )  i s  redef ined  as 

- 
6X 

= F ( t )  E + G ( t ) G  

where F ( t )  i s  the  system  matrix  and  G(t)  is the   input   mat r ix .  

In   order   to   determine  the  opt imal   feedback  control ,  one mus t  

f i r s t  choose some index of performance  to   extremize.   For   this  work 

quadrat ic   indices   of   performances  of   the   type 

were  assumed  where S ( t f )  is the   terminal   condi t ion  matr ix  whose elements 

are  chosen t o  obta in   the   des i red   t e rmina l   accuracy;   Ql ( t )  i s  t h e   s t a t e  

va r i ab le   e r ro r   we igh t ing   ma t r ix ;   Q2( t )  is  the  control   weight ing  matr ix ,  

and t f  i s  the  terminal   t ime.  

Pontryagin 's  Maximum P r i n c i p l e  i s  now a p p l i e d   t o  deLermine the  

opt imal   control   feedback.  The pre-Hamiltonian  for  the  system becomes 

where \y( t )  i s  the   cos t a t e   vec to r  which i s  a d j o i n t   t o   t h e   s t a t e   v a r i a b l e  
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vector .   Hamil ton 's   equat ions  for   the  system  are  

The opt imal   feedback  control  Go is that   control   which  minimizes  

R ( t h i s  is  the  system  Hamiltonian) 

It is  now assumed tha t   t he   cos t a t e   vec to r  3 i s  of the  form 

(1. l o )  

S u b s t i t u t i n g  Eq. (1.10) i n t o  Eq. (1.9) i t  i s  c l e a r   t h a t   t h e  

optimum c o n t r o l  is  

- 
6UO = -Q2-'( t)GT(  t)P( t ) z  (1.11) 

where -Q2-'GTP i s  the   f eedback   ga in .   D i f f e ren t i a t in s  Eq. (1.10) w i t h  

r e s p e c t   t o  time and  employing  Eqs. ( 1 . 6 ) ,  (1.7), and ( lol l ) ,  one  can 

determine  the form  of P ( t ) .  

0 
- ; .  e, 
y =  P ( t ) G  + P( t )% = -Ql(t)= - F T ( t ) F  

P ( t ) E  + P ( t ) [ F ( t ) E  + G ( t ) E ]  = - Q l ( t ) s  '- FT( t )P ( t )% 
6 
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Since  6x i s  common t o  a l l  terms and is  not   equa l   to   zero  

;(t) = - P ( t ) F ( t )  - F T ( t ) P ( t )  - Q l ( t )  + P( t )G( t )Q2- ' ( t )G   ( t )P ( t )  
(1.13) 

Here P ( t )  is  a symmetric,   nonlinear,   generally  t ime-varying 

m a t r i x   s a t i s f y i n g  a d i f f e r e n t i a l   e q u a t i o n  of the matrix R i c a t t i   t y p e .   I f  

the   t e rmina l  t i m e  i s  no t   pe rmi t t ed   t o   va ry ,   i e   6 t f  = 0, then  the 

boundary  condition  on  P(t)  is found t o  be P ( t f )  = S ( t f ) .  

Thus i n   o r d e r   t o   s o l v e   f o r   P ( t )  i t  is  necessa ry   t o   i n t eg ra t e  

Eq. (1.13) backwards i n  time. 

F igure  1 i s  a block  diagram of t h e   s o l u t i o n  of the  opt imal  

control   process .  

I f ,   i n   a d d i t i o n   t o   s y s t e m   i n t e r n a l   n o i s e ,   t h e r e  is a l s o   n o i s e   i n  

t he  measurement of the   sys tem  s ta te   var iab les ,   which  i s  genera l ly   the  

c a s e ,   s t a t i s t i c a l   e s t i m a t e s   o f   t h e s e   s t a t e   v a r i a b l e s  must be made t o  

pred ic t   the   op t imal   cont ro l .  The opt imal   c losed  loop  control  is then 

def ined   as   tha t   cont ro l   which   min imizes   bo th   in te rna l   and  measurement 

noise.   Since  the  optimal  closed  loop  control,  as shown, i s  based on 

known values   o f   the   sys tem's   s ta te   var iab les ,  i t  i s  important   that   the  

bes t   es t imate   poss ib le  be determined. 

It i s  known tha t   for   l inear   sys tems  wi th   quadra t ic   per formance  

c r i t e r i a ,  i t  is possible   to   solve  the  es t imat ion  problem  and  the  previously 

developed  optimization  problem  separately  and s t i l l  o b t a i n   t h e   o v e r a l l  

optimum When es t imates  of t h e   s t a t e   v a r i a b l e s  are used  in  

nonlinear  systems, however, i t  cannot be assumed tha t   t he   ove ra l l   sys t em 

w i l l  s t i l l  be op t ima l .   C lea r ly ,   i f  estimates o f   t h e   s t a t e   v a r i a b l e s  were 
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avai lab le   the   on ly   recourse  would be t o   u s e  them. The problem of j o i n t  

es t imat ion   and   op t imiza t ion   for  a nonlinear  system i s  an  extremely 

d i f f i c u l t   u n s o l v e d  class of s t a t i s t i c a l   o p t i m i z a t i o n  problems. 

The d i f f e ren t i a l   equa t ions   gove rn ing   t he  dynamics of   the  nuclear  

reactor   system now become 

m -  - = f ( Z ,  u) + G ( t )  
X 

7 = M(t)x + 3(t) 
(1.14) 

where 

The ve 

=I s t a t e  vec tor  

= con t ro l   vec to r  

= measurable  vector 

= Markov-Gauss  random vec tor  

= Markov-Gauss  random vec tor  

.nd T ( t )   i n  Eq. (1.14) are  independe n t  random processes  

(whi te   no ise)   wi th   ident ica l ly   zero  means and  covariance  matr ices  

cov [w( t ) ,  W(T)] =: A ( t )  €i(t - T )  

COV [c(t), v ( ~ ) )  R( t )  . b ( t  - 
T ) f o r   a l l  t, 7 

cov [G(t) ,  :(,)I = 0 (1.15) 

where 6(.) i s  the   D i rac   de l t a   func t ion ;   A( t )  i s  a pos i t i ve   s emide f in i t e  

symmetric  matrix;   R(t)  is  a pos i t ive   def in i te   symmetr ic   mat r ix .  

The covariance  matr ix   of  two vector   valued random v a r i a b l e s  

a ( t ) ,  b(T) i s  denoted by 
- 

cov [ a ( t ) ,  b(T)] = & ?i(t)b’T(T)- & a ( t )   & b T ( T )  (1.16) 

where E( .) denotes  expected  value.  

14 1 



I n   o r d e r   t o   u s e   l i n e a r   o p t i m a l   s t o c h a s t i c   c o n t r o l   t h e o r y ,  it 

i s  necessa ry   t o  expand Eq. (1.14) abou t   t he   op t ima l   t r a j ec to ry  

(1.17) 
o r  

" 

6X 
- F ( t ) s  + G(t)& + 

= M(t)z + 3 

Here i t  i s  assumed t h a t   p e r t u r b a t i o n s   o f   t h e   s t a t e   v a r i a b l e s  

about   the i r   op t imal   pa ths   a re  due e n t i r e l y   t o   n o i s e   i n   t h e   c o n t r o l   v e c t o r .  

I n  a nuc lea r   r eac to r   sys t em  th i s  is  reasonable  because a l l  no ise  w i l l  

show up a s   r eac t iv i ty   pe r tu rba t ion   wh ich   i n  most cases  i s  the   con t ro l  

v a r i a b l e  . 
The op t ima l   e s t ima te   o f   t he   s t a t e   vec to r  a t  time t based on 

known information  €or  time p r i o r   t o  t i s  "(tit) and i s  generated by a 

linear  dynamical  system  of  the  form 

A 

6X 

(1.18) 

The i n i t i a l   s t a t e   Z ( t d t o )  is  zero. 

The o p t i m a l   f i l t e r   r e q u i r e d   f o r  s t a t e  va r i ab le   e s t ima t ion  i s  a 

feedback  system. It  i s  obtained by tak ing  a l i n e a r  model of t he   p l an t  

dynamics ,   omi t t i ng   t he   i npu t   con t ro l ,   f o rming   t he   e r ro r   s igna l   G( t l t )  
A 

and  feeding  the  error  forward  with a gain  K(t) .  Thus t h e   s p e c i f i c a t i o n  

o f   t he   op t ima l   e s t ima t ion   f i l t e r  i s  the  computation  of  the  optimal  time 

varying  gain ~ ( t ) .  
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The op t ima l   e r ro r  is  denoted 

Kalman has  derived  the form  of the   op t imal   ga in .   This   der iva t ion  

is  abstract   and  lengthy,  and  the  reader is  r e f e r r e d   t o   s e c t i o n s  8,9, and 

10 of  reference (8) f o r   d e t a i l s .  The opt imal   gain is  

K( t )  =I V( t)MT( t)R"( t )  

h 

The mat r ix  V( t )  i s  the  covariance  matr ix   of  E ( t l  t )  

(1.21) 

V( t )  = COV(G(t l t ) ,  %<tit>> 
h c 

(1.22) 
N 

Kalman has a l s o  shown t h a t   V ( t )  must be the   so lu t ion   o f   t he  

R i c a t t i - t y p e   m a t r i x   d i f f e r e n t i a l   e q u a t i o n  

V( t )  = F ( t ) V ( t )  + V(t)FT( t )  - V(t)M (t)R-'(t)M(t)V(t)+G(t)A(t)GT(t) 

( 1 . 2 3 )  

The i n i t i a l   c o n d i t i o n   t h a t  must be s a t i s f i e d   f o r  Eq. (1.22) i s  

V(to) = cov(sx(to>,Fx(t ,))  ( 1.24) 

Figure  2 i s  a general   b lock  diagram  of   the  solut ion  of   the 

opt imal   es t imat ion   and   cont ro l  problem. 

Since Kalman's formulat ion  and  solut ion  of   this   problem  of  

e s t ima t ing   t he  s t a t e  va r i ab le s ,  a g rea t   dea l   o f   i n t e re s t   has  been shown 

by a number of   other   researchers '  14* 15* I7Their  work b a s i c a l l y  present  
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somewhat s impler   t ech iques   for   ob ta in ing  optimum estimates of  the s t a t e  

v a r i a b l e s   f o r   d i s c r e t e  time systems.  Both  the  l inear and the   nonl inear  

estimation  problems  have  been  investigated  with  the  unanimous  result 

tha t ,   g iven  a l l  values  of the  measurable   vector  6y up t o  6y(t), one can 

s t a t i s t i c a l l y   d e t e r m i n e   t h e   o p t i m a l  estimate G ( t l   t ) .  
+ 

For   the   nonl inear   p roblems  under taken   in   th i s   s tudy  a modifica- 

t i on   o f  Kalman's l inear   approach  was formula ted   for   the   op t imal   es t imate .  

Th i s   mod i f i ca t ion   pa r t i a l ly   r e l axes   t he   r equ i r emen t   t ha t   t he   op t ima l  

es t imat ion   of   the   sys tem  s ta te   var iab les  be determined  solely from a 

l i n e a r i z e d  model  of  system  dynamics  about  the  optimal  trajectories.  Upon 

examination  of Eq. (1 .17)  it is seen   t ha t   t he  dynamics of the   op t imal  

e r r o r  is a l inear   func t ion ,   o f   bo th   the   op t imal   e r ror  s ( t   \ t )  and the  
A 

optimal   feedback  control  

es t imate   can be given by 

- 
x ( t l  

% ( t )  whereby i t  i s  formula ted   tha t   the   op t imal  

the   equat ion  

-e 
t )  = f ( x ( t l t ) * " ( t ) )  + K ( t ) y ( t l t )  

h 

(1.25) 

(1.26) 

It is observed,  however,  that  there i s  a descrepancy  between 

Kalman's opt imal   es t imate   given by  Eq. (1.18) and tha t   formula ted   in  

Eq. (1,25). Eq. (1.25) i s  a n   e x p l i c i t   f u n c t i o n   o f   t h e   c o n t r o l   v e c t o r  

whereas Eq. (1.18) is  independent  of  the  control,  The j u s t i f i c a t i o n   f o r  

us ing  Eq. (1.25) ra ther   than  Eq. (1.18) can be shown by a simple 

i l l u s t r a t i o n .  
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the  measurement, i t  i s  obvious   tha t   the   op t imal  estimate w i l l  be i d e n t i c a l  

w i t h   t h e   p h y s i c a l  s t a t e  def ined  by Eq.  (1.1) i n   t h e   n o n l i n e a r  case and 

by Eq. (1.3) i n   t h e   l i n e a r  case. 

nonl inear ,  
e 
x ( t (  t )  = E ( t )   f o r  w = 0 and = 0 

i e  II 
o r   l i n e a r   h x ( t \ t )  = G ( t )  

N 

C l e a r l y   f o r   t h i s   c o n d i t i o n  

a )   g ( t l t )  = o and  b) y ( t \ t )  =I 0 (1.27) 

Substi tuting  conditioas  (1.27a)  and  (1.27b)  into E q .  (1.19) and 

Eq.  (1.25) r e spec t ive ly  - 
G ( t )  = F ( t ) s ( t )  = 0 ( 1.3a) 

(1. l a )  
. 
Z ( t )  - f ( Z ( t ) ,  a t ) )  # 0 

- 

E q .  (1.3a) i s  no longer a l i nea r   func t ion   o f   t he   con t ro l  & and 

thus 6x can  only be ze ro   fo r   t h i s   ca se .   Th i s  i s  an  obvious  resul t   s ince 

no p e r t u r b a t i o n s   e x i s t .  Eq. ( l o l a ) ,  on the   o the r  hand, not   only is  a 

func t ion   of   the   cont ro l ,   bu t  i t  i s  i d e n t i c a l   w i t h  E q .  (1.1). 

This   formulat ion  lacks  r igorous  proof .  It i s  used   i n   t h i s   s tudy  

s o l e l y  on t h e   b a s i s  of   the  above  i l lustrat ion.   Figure 3 is  a gene ra l  

block  diagram  of   the  solut ion  of   the  opt imal   control   and  es t imat ion 

problem jus t   d i scussed .  

The optimal  feedforward  gain  K(t)  i s  s t i l l  determined by E q s .  

(1.21),  (1.22),  and (1.24). Therefore ,   the  dynamics a re   l i nea r i zed   on ly  

for   the  purpose  of   solving  the  matr ix  - R i c a t t i - t y p e   d i f f e r e n t i a l  E q .  

(1.23).  This scheme for   determining  the  opt imal   es t imate  works n i c e l y  

for   the  c lass   of   nonl inear   problems  used  to   descr ibe  nuclear   reactors .  
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I n  g e n e r a l   t h e   n o n l i n e a r i t i e s  are never more than  the  product  of two 

system  var iables .   There is  no  guarantee,  however, t ha t   e s t ima tes   o f   t he  

s t a t e  v a r i a b l e s   f o r  dynamic  systems  with  other  types of n o n l i n e a r i t i e s  

can be success fu l ly  made us ing   th i s   t echnique .   Higher   o rder   e r rors ,  

p roducts   o f   e r ros ,   and/or   d iv is ion  by e r r o r s  may t end   t o   obscu re   t he  

est imates   based on Eq. (1.25). 

A r e su l t   o f   t he   l i nea r   e s t ima t ion   wh ich  makes i t  an  optimal 

approach, is  t h a t  as t ime  increases   the   s ta t i s t ics   necessary   to   de te rmine  

K( t )   ge t   p rog res s ive ly   be t t e r .   S ince  Eq. (1.18) i s  a superpos i t ion  of 

on ly   l inear   t e rms ,   the   op t imal   es t imate   theore t ica l ly  i s  i d e n t i c a l   w i t h  

t h e   a c t u a l   p h y s i c a l  s t a t e  a t   i n f i n i t e   t i m e .  The same cannot be sa id   abou t  

the  superposi t ion  of  a l i n e a r  component wi th   nonl inear  components a s   i n  

Eq. (1.25). I n   f a c t ,   i n  some other   c lasses   of   nonl inear   problems it may 

be t h a t   t h e   s t a t i s t i c s  become worse.  This, of course,  would  not  only 

make successive  es t imates   worse,   but   would  increase  the  per turbat ions 

about   the  opt imal  s ta te .  
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Chapter 2 

OPTIMUM SYNTHESIS APPLIED TO NUCLEAR REACTOR POWER TRANSFER 

Th i s   pa r t i cu la r   syn thes i s   t echn ique  was a p p l i e d   t o  a  problem  of 

power s t a t e  change i n  a TRIGA type  nuclear   reactor   system. The  optimum 

s t a t e   t r a n s i t i o n   t r a j e c t o r i e s  were  determined i n   r e f e r e n c e  2. 

The  problem  of i n t e r e s t   c o n s i d e r s  a bare   thermal   reactor   with 

temperature  feedback.  For  convenience  only  one  group  of  delayed  neutrons 

were  used. It is  a l s o  assumed tha t   the   core   t empera ture  i s  propor t iona l  

t o  the  power leve l .  The t o t a l   e f f e c t i v e   s y s t e m   r e a c t i v i t y  i s  then  the 

sum of t he   ex t e rna l   con t ro l   rod   r eac t iv i ty   i npu t  p and the  temperature  

f eedback   r eac t iv i ty .  

where a is  the  power ( t empera tu re )   coe f f i c i en t  of r e a c t i v i t y  and n i s  the  

r e a c t o r  power leve l .  The r e a c t o r   k i n e t i c s   a r e   d e s c r i b e d  by the  fol lowing 

where  the  neutron  density (power l e v e l )  n  and  the  precursor  concentration 
I 

c a r e   t h e   s t a t e   v a r i a b l e s   a n d   t h e   r e a c t i v i t y  i s  t h e   c o n t r o l   v a r i a b l e .  

The system i s  assumed t o  be i n   t h e   s t e a d y - s t a t e   f o r   t i m e  t G O  and  has  the 

i n i t i a l   c o n d i t i o n s .  
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The  problem i s  t o   i n c r e a s e   t h e  power  from t h e   i n i t i a l   s t a t e  no t o  a 

t e r m i n a l   s t a t e  ano,  where a i s  some constant   greater   than  l .0 ,with 

minimum control   energy.  The performance  index  for  the  system i s  

J =  Jtf 6 d t  
0 

It is assumed that  the  control  system  has  inertia  and  cannot  respond 

instantaneously-   This  is  given by t h e   c o n s t r a i n t  

The con t ro l   va r i ab le   t hus  becomes 6 i n   l i e u   o f  and now becomes  a 

s t a t e   v a r i a b l e .  The k ine t i c s   equa t ions  become 

e 

;1 = ( - a - p ) n / a  + xc 

E = pn/a - xc 

p = u  (2.6) 

where  u is  the   cont ro l   var iab le .   F igures  4 and 5 show the  opt imal  

r e a c t i v i t y  and  optimal power l e v e l   t r a j e c t o r i e s ,   r e s p e c t i v e l y ,   f o r  

i nc reas ing   t he   r eac to r  power  from 10 kw t o  50 kw with  minimum energy. 

Figure 6 shows the   con t ro l   va r i ab le   op t ima l   t r a j ec to ry .  

The  problem s t a t e d  above was r e fo rmula t ed   fo r   d ig i t a l  computer 

computation.  The  optimal power t r a j e c t o r y  was approximated by an e igh th  

degree  polynomial  with  t ime  as  the  variable.  The following  parameters 

were used  for  computation. 

X = 0.1 s e c  -1 

Q - 10-5 kw-1 

= 10-3 s e c  

"0 
P 10 kw 

a = 5  

0 =I 0.0064 
tf = 0.47 s e c  
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The  boundary  condition a t  terminal  t ime is  t h a t   n ( t f )  =I 0. It 

i s  e a s i l y  shown tha t   t he   t e rmina l   r eac t iv i ty   r equ i r ed   t o   ma in ta in   t h i s  

condi t ion is 

For   c losed   loop   synthes is ,   th i s   t e rmina l   reac t iv i ty   can  be 

maintained by a d i ther   type   cont ro l   as   sugges ted   in   re fe rence  2 w i th  

a p p r o p r i a t e   r e a c t i v i t y   c o n s t r a i n t s .   T h i s   t h e n   r e q u i r e s   t h a t   t h e   o p t i m a l  

c losed loop process  only be used up to   t he   t e rmina l   t ime  tf when 

G ( t f )  = 0 and n ( t f )  = an0. 

Having  formulated a model for   the  nuclear   reactor   system  and 

de termined   the   op t imal   t ra jec tor ies  it i s  necessary  to   determine  the 

l i nea r i zed   sys t em  coe f f i c i en t   ma t r ix   abou t   t he   op t ima l   t r a j ec to r i e s .  

The devia t ion   of   the   s ta te   and   cont ro l   var iab les   about   the   op t imal  

t r a j e c t o r i e s   a r e  

and 
6u = Uac - uop 

The  output s ta te  vec tor  is  

- 6x = [g,] 
The l i n e a r i z e d  model  becomes 

(2. l o )  

(2.11) 

(2.12) 



where 

The s teps   involved   in   the   rea l iza t ion   of   the   cont ro l   sys tem  a re :  

(a)   Choice  of   the  acceptable   opt imal   t ra jector ies .  

(b)   Evaluat ion  of   F( t )   and  G(t)   a long  the  opt imal   t ra jector ies .  

(d)  Storage   o f   the   op t imal   s ta te   var iab les ,   op t imal   cont ro l  
va r i ab le s  and the  feedback  gains Q2-1GTP and M R - 1 .  

The se l ec t ion   o f   t he   e r ro r   we igh t ing  and control   weight ing  matr ic ies ,  Q1 

and Q2, i s  a r b i t r a r y .   I n   p r a c t i c e   t h e   b e s t   s e l e c t i o n  is determined by 

va ry ing   t he   r a t io   o f  Q1/Q2. T h e o r e t i c a l l y   t h e  optimum feedback  control 

system is  a r r i v e d  when t h i s   r a t i o  becomes i n f i n i t e .   I n   a c t u a l i t y ,  however, 

t h i s   s i t u a t i o n  is phys ica l ly   unrea l izable   s ince   the   cont ro l   sys tem would 

become so "s luggish"   tha t  i t  could  not   possibly  fol low  the  system.  I f   the  

r a t i o  is  too  small   the   feedback  control  would not  have much e f f e c t  on the  

random process. The obvious  choice,  then is  t h e   s m a l l e s t   r a t i o  which 

yields   acceptable   accuracy.  The cont ro l   weight ing   mat r ix  Q2 f o r   t h i s  

problem i s  a 1x1 matr ix   equal   to   un i ty .  From Eq.  (1.11) the   op t imal  

feedback  control becomes 

(2.14) 

where P a re   typ ica l   e lements   o f   the   P( t )   mat r ix   so lu t ion   of  Eq. (1-13). 

The e r ror   weight ing   mat r ix  i s  a  3  x  3 diagonal  matrix  of  the  form 

i j  

(2.15) 
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where  the  elements A, B, and C a re   chosen   to   ob ta in   the   requi red  

accuracy.  For  convenience A, B, and C are  constant  and  chosen to be 

i n t e g r a l  powers  of 10. The .mat r ix   can   eas i ly  be represented   in   the  

following way, 

L 0 0 l0Cl  (2.16) 

where  a, b, c are  the  exponents.  

Figure 7 i l l u s t r a t e s   f eedback   ga in  programs  of P31, P32, and 

p33 fo r   con t inuous   e r ro r   de t ec t ion   i n   t h i s  example, f o r  Q1 ( 0 ) -  m,4). 

This   so lu t ion  was obtained by i n t e g r a t i n g  Eq. (1.13)  backwards in  t ime 

on The Univers i ty  of Arizona's IBM 7072 d i g i t a l  computer. The techniques 

r equ i r ed   t o   ob ta in   t h i s   so lu t ion   a r e   d i scussed   fu l ly   i n   t he   s ec t ion  on 

numerical  methods. 

As mentioned, random dis turbances   a re   incorpora ted   in to   the  

nuclear   reactor   systems  as   control   per turbat ions.   For   digi ta l   computer  

syn thes i s   t h i s  is  very  easy  to  accomplish. The a c t u a l   c o n t r o l  becomes 

Uac =f uop + w - m o p  (2.17) 

where w is  the  random disturbance.  This  disturbance is  assumed to  be 

Gaussian  with zero-mean. On t h e   d i g i t a l  computer  a random  number 

generator  is  used  to   generate  W. A discussion  of  the  computer scheme 

i s  g iven   la te r .  

The covariance  matrix  A(t)   can be determined  from w. Here w 

i s  a 1 x 1 vector  with  element w l l .  The covariance  matrix is  then  simply 

.- - --, 
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where 0 ~ 1 1 ~  is the   var iance   assoc ia ted   wi th   the  

d is turbance  w l l m  Inasmuch as s y n t h e s i s   o f   t h i s  

Gauss ian ly-d is t r ibu ted  

problem was performed on 
/ 

a d i g i t a l  computer t h e   s t a t i s t i c s   o f  wll and  other  random v a r i a b l e s  were 

predetermined. By d i g i t a l  computer syn thes i s  i t  is  poss ib le   to   de te rmine  

how small t he   pe r tu rba t ions  must be i n   o r d e r   t h a t   t h i s   l i n e a r i z e d  

feedback  formulation be va l id ,  by v a r y i n g   t h e   s t a i i s t i c s  of the random 

var iab les .  

I n  a reactor   system i t  i s  only   poss ib le   to   measure   the   s ta te  

va r i ab le s   o f  power and   reac t iv i ty .  No measurement  can be performed on 

the  precursor   concentrat ion.  The measurement  matrix  must  then  take  the 

form 

(2.19) 

For t h i s  example i t  can be assumed t n a t   t h e  measurement is  a 

l i nea r   func t ion  or' the   observed   var iab les ,   i e  m l i  =I m33 1. 

Freqirently  the power l eve l   o f  a l a r g e   r e a c t o r  i s  measured  logarithmically 

changing  the form of mil. Noise  in  the  measurement i s  represented  by the  

Markov-Gauss vec tor  

(2.20) 

The covariance  matr ix   R(t)  i s  determined  for   the  case where a l l  V i  have 

zero mean wi th  no c ross   co r re l a t ion  

( 2 - 2 1 )  

The following  values  have  been  determined  for  the  variances of 

t he  random va r i ab le s .  Here i t  i s  assumed t h a t  Lhe random va r i ab le s  be 
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cons t r a ined   t o   f i ve   pe r   cen t   o f   t he  maximum value   o f   the i r   respec t ive  

s t a t e  or c o n t r o l   v a r i a b l e  99.9 per   cen t  of the  time. 

= O.OOOOi52 

an2 = 0.583 

ac2 = 114.3 

= 0.000166 

Knowing the  forms  of M(t), A( t ) ,   and   R( t )   so lu t ion  of Eq. (1 .22 )  

i s  poss ib le .  The elements   of   the   covariance  matr ix   V(t)   are   s tored  as  

t h e   o p t i m a l   f i l t e r   g a i n s .  The same numer ica l   t echniques   requi red   to  

eva lua te   t he   ? ( t )   ma t r ix   ho ld   i n   t h i s   ca se   w i th   t he   excep t ion   t ha t   t he  

vi a re   in tegra ted   forward   in   t ime.  

In   pract ice   t ime  varying  feedback  gains   are   not   desirable .  I t  

has   been   sugges ted   tha t   the   mat r ix   Rica t t i   d i f fe ren t ia l   equa t ions  be 

solved  in   the  s teady-state   for   l inear   systems  to   obtain  constant   gains .  

This  technique, however, can  not be appl ied   to   nonl inear   sys tems due t o  

t h e   f a c t   t h a t   b o t h   F ( t )  and  G(t)   are   t ime  varying  funct ions  of   the 

o p t i m a l   t r a j e c t o r i e s .  A simple  average  of  the  time  varying  gains  over 

the   cont ro l   per iod  would sccomplish  the same purpose. However, such a 

control   system would be sub-opt imal   s ince   th i s  would p lace   too  much 

co r i t ro l   i n   t he   i n i t i a l   phase  and  too l i t t l e   c o n t r o l   i n   t h e   f i n a l  phase. 

Seve ra l   con t ro l  schemes  were s y n t h e s i z e d   f o r   t h i s  problem t G  

de te rmine   the   re la t ive   mer i t s  of each.  Each  scheme w a s  ca r r i ed   ou t  

d i g i t a l l y   u s i n g   i d e n t i c a l   d i s t u r b a n c e s   i n   b o t h   c o n t r o l   a n d  measurement. 

I n  all cases   so lu t i cn  of t h e   P ( t )   m a t r i x  was r equ i r ed .   In   add i t ion   t he  

open loop s o l u t i o n  was obtained  for  comparison  purposes.  Figure 8 

i l l u s t r a t e s   t h e   d i f f e r e n t  power b e v e l   t r a j e c t o r i e s   f o r   t h e   f o u r  schemes 
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with   the   inc lus ion   of   bo th   the   open   loop   and   the   op t imal   t ra jec tor ies .  

These  curves  were  obtained  for an e r ror   weight ing   mat r ix   o f  Ql(0,  -=,4). 

For   purposes   o f   ident i f ica t ion   these  schemes  were labeled:  

(1) Kalman l inea r   e s t ima to r  

( 2 )  Nonlinear   es t imator  

( 3 )  Time varying  gain  with  no  es t imator  

( 4 )  Constant   gain  with no es t imator  

The "Kalman l inear   es t imator"  i s  depic ted   in   F igure  2 .  The 

s o l u t i o n  of  the  "nonlinear  estimator" i s  shown in   F igu re  3.  These two 

sys tems  requi re   the   so lu t ion   of   the   mat r ix   Rica t t i - type  Eq. ( i . 2 2 ) .  I n  

p r a c t i c e   t h i s  i s  done i n   r e a l  t i m e  du r ing   t he   con t ro l   p rocess   u s ing   a l l  

known information,   This ,   then,   c lear ly   requires   in   addi t ion,   not   only 

s t o r e d  programs  of   the  opt imal   t ra jector ies   and  gains ,   but  a computing 

device   to   per form  the   in tegra t ion .   In  most nuc lear   cont ro l   appl ica t ions  

such a system is no t   f ea s ib l e .   Fo r   con t ro l l ed   s t a r tup   o f  a space  nuclear  

r eac to r ,  however,  where cont ro l   t imes   a re  small and  optimization  of some 

performance  index,  such a propellant  consumption, i s  c r i t i c a l   s u c h   c o n t r o l  

schemes  appear  desirable.   Solution of t h e   p ( t )   m a t r i x  must be 

precalculated  as  mentioned. 

The "time  varying  gain  with no est imator ' '  scheme e l imina tes   the  

requirement   that  a computing  device be part   of  the  control  system. The 

s o l u t i o n   o f   t h i s  scheme i s  shown in   F igu re  1, No attempt  has  been made 

t o   g e t   s t a t i s t i c a l l y   b e t t e r   e s t i m a t e s  of the  measured s t a t e  va r i ab le s .  

Since i t  i s  impossible   to   measure  precursor   concentrat ion,   and no 

at tempt  i s  made t o   e s t i m a t e   t h i s   v a r i a b l e ,   t h e  form of   the   op t imal   cont ro l  
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changes  from tha t   g iven  in Eq. (2.14) t o  

6uOp = - (~3ls^n  + p336p) 
r- 

(2.22) 

A s u f f i c i e n t   e r r o r   w e i g h t i n g   m a t r i x   f o r   t h i s   c o n t r o l  scheme  would 

be 

Q1 = Ql(a, - m,b) (2.23) 

neglect ing  the  weight  on the   unobservable   s ta te   var iab le ,   p recursor  

concentrat ion.  

The "constant   gain  with no est imator"  i s  iden t i ca l   w i th   t he  

previous scheme except   that   the   gair .   e lements   are   averaged  over   the 

control   per iod.   This  i s  the   s imp les t   con t ro l   t ha t  s t i l l  contains  an 

element of the  optimization  technique.  For most p r a c t i c a l   a p p l i c a t i o n s  

t h i s  would appea r   t o  be the   mos t   des i rab le .   Solu t ion  of the matr ix  

R i c a t t i - t y p e  E q .  (1.13) can e a s i l y  be obta ined   for   any   des i red   t ra jec tc ry .  

Here it  should be pointed  out   that   opt imal   c losed  loop  control   theory  can 

be a p p l i e d   t o  any knom  nominal   t ra jec tory   and   no t   necessar i ly  2n 

opt imal  one, s l cce   on ly   t he   e r ro r  of t h e   c m t r o ?  and s t a t e   v a r i a b l e s   a r e  

optimized. 



Chapter 3 

FORMULATION OF THE OPTIMAL  CLOSED LOOP CONllROL PROBLEM 
FOR  START UP OF A NUCLEAR ROCKET ENGINE 

The dynamics  of a nuclear  rocket  engine  have  been  formulated  in 

several   references18,  19,20. Two, somewhat conf l i c t ing ,  sets of nonl inear  

d i f f e r e n t i a l   e q u a t i o n s  have  been  formulated by Smith  and  StenningL8,  and 

Mohler  and Perry”.  Both  formulations  consider a nuclear   rocket   engine 

with  bleed turbo-pump o r  topping turbo-pump dr ive .  The bas i c   d i f f e rence  

in   t hese  two concep t s   a r i s e s   i n   t he  form  of the   t empera ture   reac t iv i ty ,  

8%. Sini th   and  Stenning  contend  that   th is   react ivi ty  i s  d i r e c t l y  

p ropor t iona l   t o   t he   squa re   roo t  of the  core   exi t   s tagnat ion  temperature ,  

i e  6K++ e. Mohler  and P e r r y   c o n t e n d   t h a t   t h i s   r e a c t i v i t y  is  d i r e c t l y  

propor t iona l  t o  th i s   t empera tu re ,   i e  ”= C$T. Since   there  are o t h e r  

sources  of r e a c t i v i t y   i n   s u c h  a system  both  content ions  could  give  fa i r ly  

accu ra t e   r e su l t s   s imp ly  by choos ing   appropr i a t e   r eac t iv i ty   coe f f i c i en t s .  

The model considered  for  this  problem is t h a t   p u t   f o r t h  by 

Mohler  and Perry 19 . It c o n s i s t s  of the   bas ic   neut ron   k ine t ics   equa t ions ,  

coupled  with a heat   exchange  equat ion  via   core   temperature   and  propel lant  

f l o w   r a t e   i n   t h e  form  of r e a c t i v i t y .  The fo l lowing   non l inea r   d i f f e ren t i a l  

equat ions  descr ibe  the  system  of   interest .  

Neutronics 



Heat Exchanger T " M  
9, - T  

+h 

where the  system s t a t e  v a r i a b l e s  are Q, C i ,  and T. 

Q = power l e v e l  

C i  = precursor   dens i ty   for   i th   de layed   neut ron   group 

T = core ex i t  s tagnat ion  temperature  

er = t o t a l   r e a c t i v i t y  

Mc = mean e f f ec t ive   hea t   capac i ty  of r eac to r   co re  

7h = heat  exchanger  time  constant. 

The t o t a l   r e a c t i v i t y  i s  comprised of  c o n t r o l   r o d   r e a c t i v i t y  u1, 

p r o p e l l a n t   d e n s i t y   r e a c t i v i t y  6Kp and   tempera ture   reac t iv i ty  6KT. 

where 
8% = CTT (3 .4 )  

and 

Here  ul, is  the   con t ro l   rod   r eac t iv i ty ,  a con t ro l   va r i ab le   and  

u2 i s  the  coolant  mass f low  r a t e ,   a l so  a cont ro l   var iab le .   Usual ly  

CT SO and C,Z 0. The heat  exchanger  thermal  t ime  constsnt i s  

where a i s  a cons tan t  of p r o p o r t i o n a l i t y  a t  ra ted  design  f low  ra te .  

The fo l lowing   hypothe t ica l   nuc lear   rocke t   ra ted   des ign  

condi t ions  were  used  as   system  parameters .  

Maximum Reactor Power, Qmax 
Design  Propel lant  Flow Rate 

2260 megawatts 
130 Ib /sec  



Maximum core   ex i t   s tagnat ion   tempera ture ,  Tmax 
Heat exchage r   t he rma l  t i m e  constant ,  q., 
Propel lan t   in le t   t empera ture ,  Tmin 
Mean e f f ec t ive   neu t ron   l i f e t ime ,  a 

Propel lant   react ivi ty ,6Kp 
Temperature   react ivi ty ,  6Q0 

Effec t ive   de layed   neut ron   f rac t ion ,  B 
Effec t ive  one  group  decay  constant, h 
Effec t ive   co re  mass heat   capaci ty ,  Mc 

4500 OR 
1.5 s e c  
120 OR 

3 x 10-5 sec 
0.0065 
-0.0065 
0.0065 

0.1 sec-1  
1140 B t U / O R  

The optimal  control  problem was s t a t e d  by Mohler as fol lows:  21 

"Given  an i n i t i a l   r e a c t o r   s t e a d y - s t a t e ,   b r i n g   t h e   s y s t e m  
to   t he   des i r ed   t e rmina l   s t eady- s t a t e  so as t o  minimize  the 
consumption  of  propellant.. . . I '  

The index  of  performance  thus becomes the  minimizat ion  of   the  control  

v a r i a b l e  9. Due t o  turbo-pump des ign   cons t ra in ts ,   such  as s t a l l i n g  and 

pump cav i t a t ion ,  u2 is constrained  to  both  an  upper  and  lower l i m i t .  

I n  addi t ion   to   f low rate  c o n s t r a i n t s   t h e r e  are c o n s t r a i n t s  on 

core  maximum power, maximw. temperature, maximum and minimum con t ro l  rod 

r e a c t i v i t y   i n s e r t i o n ,  and r a t e  of  core  temperature  r ise.  

where y is a p o s i t i v e  number g rea t e r   t han  1. 

For  convenience,  one  group of delayed  neutrons  were  used  in   this  

formulation. The pre-Hamiltonian  for  the  system becomes: 
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The Hamiltonizn is that   funct ion  which  minimizes  R w i th   r e spec t  

t o   t h e   c o n t r o l  u2 

(3.10) 

The opt imal   cont ro l  scheme w h i c h   s a t i s f i e s  a l l  o f   t he   cons t r a in t s  

and the  index  of  performance  has  been  determined by Mohler  and i s  t h a t  

used   for   th i s   formula t ion .  The c o n t r o l  law was fo rmula t ed   d ig i t a l ly  

us ing  Eqs. (3.1) and  (3.2)  and  constraints  (3.8). However, a fundamental 

discrepancy was encountered. When maximu power  and maximum r a t e   o f  

t empera tu re   r i s e  were  achieved,   both  control   var iables  u1, and  u2  behaved 

oppos i t e   t o   t ha t   expec ted .  The r o d   r e a c t i v i t y  ul,  which  should  decrease 

a t  maximum power, increased  monotonically.  The propel lant   f low  ra te   u2,  

cons t r a ined   t o  be minimum should  have  increased  a t   the   t ime Q = Qmax and 

T = (3, but  decreased below t h e  minimum. A t  present,   the  ambiguity  has 

not  been  explained, The formulation  of  the  closed  loop  control,  however, 

s t i l l  holds. 

0 

The dev ia t ion  of t h e   s t a t e  and con t ro l   va r i ab le s   zbou t   t he  

o p t i m a l   t r a j e c t o r i e s   a r e :  

(3.11) 

(3.12) 

The l i n e a r i z e d   o u t p u t   s t a t e   v e c t o r  i s  

(3.13) 



and t h e   l i n e a r i z e d   c o n t r o l   v e c t o r  is  

(3 .14)  

The model   descr ib ing   per turba t ions   about   the   op t imal   t ra jec tor ies  i s :  

- 
6x = F ( t ) s  + G ( t ) G  

The opt imal   feedback  control  i s  a 1 x 2 vec to r   i n  6ul and 
0 

6u2, . From  Eq. (1.11) t h e   s o l u t i o i ~  of t hese   con t ro l s  become: 

(3.16) 

(3.17) 

where the  P i j  a re   typ ica l   e lements   o f   the   mat r ix   so lu t ion  of t h e   R i c a t t i  

mat r ix  Eq,  (1.13), P ( t ) .  Here, i t  i s  assumed tha t   the   cont ro l   weight ing  

mat r ix  Q2 i s  a 2 x 2 i den t i ty   ma t r ix .  Again the   e r ror   weight ing   mat r ix  

Q 1  i s  a n   a r b i t r a r y  3 x 3 diagonal   matr ix  whose elements  depend on the  

required  accuracy. 

The covarFance  matr ic ies  A ( t )  and  R(t)  must be determined by the  

s t a t i s t i c a l   a m p l i t u d e s   o f   p e r t u r b a t i o n s   a b o u t  a l l  o p t i m a l   t r a j e c t o r i e s .  
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These  in  turn are used  in  the  solution of Eq. (1.22) to  optimally  predict 

the  state  variables. 

, 

The measurable  state  variables  in  tbis  example  are  both 

temperature  and  power  level. In all  probability  the  power  level  in  a 

nuclear  rocket  system  will  be  measured  logarithmically,  but  for  digital 

synthesis  linear  measurement  can  be  assumed. 

The  measurement  matrix is thus: 

where 

(3.18) 

The  four  optimal  feedback  control.  schemes  advsnced  in  the  previous 

chapter  can  easily  be  investigated  for  this problem digitally. 

168 



I 

Chapter 4 

DISCUSSION OF THE NUMERICAL mTHODS 

The f i r s t   s t e p   i n   t h e   n u m e r i c a l   s y n t h e s i s   o f   t h e   o p t i m a l   c l o s e d  

loop  problem was to   de te rmine   va lues   for   the   op t imal  s t a t e  va r i ab le s .  

I n  example 1, t h i s  was done by making a polynomial  approximation  as a 

function  of  t ime of a g raph ica l   r ep resen ta t ion  of  t h e   o p t i m a l   s t a t e  

va r i ab le ,  which was obtained from  an  analog  computer  solution  of  the  state 

and aux i l i a ry   equa t ions ,  Using e i g h t  boundary  conditions  along  this 

t r a j ec to ry ,   Crou t ' s  method  of matr ix   reduct ion was appl ied   to   de te rmine  

t h e   c o e f f i c i e n t s   f o r  t h e  polynomial  expressions  of n ar?d n. These 

polynomial  expressions 

= 2 A t  + 3Bt2 + 4Ct3 + S D t 4  + 6Et5 + 7 F t 6  + 8Gt7  (4.1) 

were  used t o  determine a l l   o p t i m a l   t r e j e c t o r i e s   f o r  47 increments  of 

t h e ,   w i t h  At: = 0.01 seconds,   and  stored  as  reference  data  for  the 

syn thes i s  problem. 

The Crout method2', developed  in   1941  for   desk  calcuiator  by an 

e l e c t r i c a l   e n g i n e e r ,  P. D. Crout, is  p a r t i c u l a r l y   w e l l - s u i t e d   f o r   s o l v i n g  

s imul taneous   l inear   a lgebra ic   equa t ions  on t h e   d i g i t a l  computer.  Because 

both  the  recording of new a r r a y s  and  the  perforning  of  repeated row 

opera t ions  a t  each   in te rmedia te   s tage   o f   the   reduct ion   a re   no t   necessary ,  

the  Crout  method is  more e f fLcier l t   in  terms of time and f a r  less conducive 

169 



t o   g r o s s   e r r o r   t h a n   t h e  more widely  used  Gauss-Jordan  method. 

This  method t r ans fo rms   t he   o r ig ina l   ma t r ix  A i n t o  a t r i a n g u l a r  

rev ised   mat r ix  A '  by the  rolLowing  operations upon the  elements  of  the 

mat r ix  : 
j-1 

where a i j   a r e   t yp ica l   e l emen t s   o f   t he  A matrix.  

The so lu t ion   t o   t he   sys t em i s  then   ca lcu la ted  from the  t_rensfomed  matr ix  

by back s u b s t i t u t i o n  from  bottom t o   t o p   a c c o r d i n g   t o   t h e   r e i a t i o n s h i ?  

n 
i i n  - 2 x = a '  a '  ik xlc k= if 1 

( 4 . 3 )  

These   r e l a t ionsh ips   a r e   fu l ly   de r ived   i n   r e f e rence  22,  page 486,  

The nex t   s t ep  was to   eva lua te   the   typ ica l   e lements  P i j  and Y i j  

of Eqs. (1,13) and (1.22). These a re   sys t ems   o f   f i r s t   o rde r   non l inea r  

d i f f e r e n t i a l   e q u a t i o n s .  The usua l  method of a t t a c k  on systems of 

d i f f e ren t i a l   equa t ions   has  been the  Milne  Hethod  or  Runge-Kutta Method. 

The f i r s t  i s  a p red ic to r - co r rec to r  method involving  the  use of two 

quadrature  formulas;   the  second i s  e s s e n t i a l l y  an  averaging method. 

Because of t h e   s i z e  of the  systems  involved, a combination  of two we l l -  

known methods, the  Trapezoidal   rule   and  the Newton-Raphson i t e r a t i v e  

method, i s  chosen  instead  to   achieve  the  solut ions.  

The s o l u t i o n  of t he   R ica t t i - t ype   ma t r ix   d i f f e ren t i a l   equa t ion  is  

a symmetric  matrix.  For  example,  six,  rather  than  nine,  simultaneous 

d i f f e r e n t i a l   e q u a t i o n s   r e s u l t  from a 3 x 3 ma t r ix   so lu t ion .  
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These  equations were then  integrated  numerical ly   as  a func t ion  

of t i m e  us ing   the   Trapezoida l   ru le .  The r e s u l t  is, ins tead   of   nonl inear  

d i f fe ren t ia l   equa t ions ,   nonl inear   a lgebra ic   equa t ions .  The f a m i l i a r  

Newton-Raphson technique was chosen to   so lve   these   equat ions .   This  

technique,   in   conjunct ion  with  the  previously  discussed  Crout   matr ix  

reduct ion,  is w e l l  a d a p t e d   t o   t h e   d i g i t a l  computer so lu t ion   of   th i s   type  

of problem. The form  of the   in tegra ted   equat ions  is, by the  Trapezoidal  

ru l e ,  

k- 1 V 
Vij(tk) - V .  . (o)  = A t  fv .= + c f .  . ( t g )  + V f i  j ( t k )  

1 3  1 J  2 a=l 'J 2 

P V 
where f i j  and f.: a re   t he   func t ion  forms  of t h e   P i j  and Vi j   de r iva t ives  l j  

r e spec t ive ly .  The  rn'aus s ign  i s  introduced  In  E q .  ( 4 . 4 )  s ince   the  P i j  

a r e   i n t e g r a t e d  backwards ir. time. The r e s u l t  can be expressed  as   the 

system  of  equations of  the form 

where   t he   q i j   r e f e r   t o   e i t he r  P i j  o r   q i j  

where 

f n ( P i j )  = P i j ( t k )  + IQ k + A t  f . . ( t k ) / 2  P P 
1 J  
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and 

( 4 .  IO) 

The  Newton-Raphson  Method is  one   of   success ive   i t e ra t ions .   For  

t h e   d i g i t a l  computer s o l u t i o n   t h e   b e s t  method  of o b t a i n i n g   f i r s t  

approximations f o r  the   k th  time per iod  was the  Rtinge-Kutta technique as 

a predic tor   based  on t h e   f i n a l   r e s u l t   o f   t h e   k - l i h  time per iod.  

where 

R 
P P 
lij = -At  f. 1 J  . ( P i j )  

= -At f .   . ( P i j  + R3ij) 
P 

R 4 i  j 1 3  

and 

where 
RV = A t  f i j (V .  .) 
li j 1 3  

V 

V 
R z i j  = A t  f .  V .(V. .+ R / 2 ) ;  V 

1 3  1 J  

(4.11) 

(4 .12 )  
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Again the  minus s ign   appea r s   i n  R h  because  of  backward  integration. 

The  Newton-Raphson technique is a l i n e a r i z i n g   i t e r a t i v e   t e c h n i q u e   f o r  

de te rmining   smal l   devia t ions   in   the   q i j   f rom  the i r   t rue   va lues  as 

determined  from  the  following  equations 

i j  

( 4 . 1 3 )  

where 
n = m(m + 1)/2 

The increments Aq a r e  
i j  

where r e f e r s   t o   t h e   i t e r a t i o n  number. 

Eqs. ( 4 . 1 3 )  are l inea r   s imu l t aneous   a lgeb ra i c   equa t ion   i n  si, 

which  can  be  solved by Crout 's  method.  These a re   t hen   t he  new va lues   for  

the  next   i terat ion.   Convergence by t h i s  method i s  genera l ly   rap id .   Care  

must  be  taken t h a t   a l l   t i m e   v a r y i n g   e n t i t i e s   a r e   a r r a n g e d   i n   t h e   p r o p e r  

o rde r   fo r   each   s e t   o f   ca l cu la t ions .  

The d i g i t a l  computer  program i s  given  in  the  appendix  and i s  

e n t i t l e d   " S o l u t i o n  of the   T ime-Varying   Mat r ix   Rica t t i   Di f fe ren t ia l  

Equation''23  and w i l l  be publ ished a t  a l a t e r   da t e .   F igu res  9 and 10 

show flow  charts  for  the  computer  code. 

A l l  random dis turbances  were g e n e r a t e d   d i g i t a l l y  by means of a 

"canned"  number  generator  function  within  the IBM 7072 systems tape. 
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The  random  disturbances  were  assumed  to  have  zero  mean  with  a  Gaussian 

distribution  given  by  the well known bell-shaped  formula, 

(4.15) 

where @ is  the  ordinate  of  the  normal  curve, RD, is  the  random  disturbance. 

For  digital  computation  all  random  numbers  from 0.0 to 1.0 were  set  equal 

to  the  exponential  of  Eq. (4.15). 

The random  disturbance  in  terms  of  the  random  number  becomes 

(4.16) 

(4.17) 

Since  the  random  disturbance  must  have  zero  mean  negative  values  of RD 

must  be  equally  as  probable  as  positive  values.  On  a  random  number 

generator  the  random  numbers  have  a  rectangular  distribution;  hence 

numbers  greater  than 0.5 are  as  likely  as  numbers  less  than 0.5. For  x 

greater  than 0.5 it  was  assumed  that RD was  positive;  for x less 0.5, 

RD was  negative.  Eq. (4.17) was  then  modified 

+ (2 In( 1 I/ 2 
2 I x - . ~ )  1) aRD 0.5<x 5 1.0 

R D =  
(4.18) 

O<x 5 0.5 - 

A l l  variances  were  determined  to  constrain  the  amplitudes  of  the 

perturbations. 

For synthesis  by  digital  Computation  straightforward  solution 

of the  equations  outlined  in  Chapter 1 was  performed  for  discrete  time 
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i n t e r v a l s .  Where the   so lu t ion   of   se t s   o f   s imul taneous   nonl inear  

d i f f e r e n t i a l   e q u a t i o n s  was required,   each was in t eg ra t ed  by the  Trapezoidal  

r u l e  and  then  Runge-Kutta  approximate  predictions  and Newton-Raphson 

i t e r a t i o n s  made to   ob ta in   t he   f i na l   accu racy .  
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Chapter 5 

AREAS FOR CONTINUING STUDY 

A major  problem in   t he   a r ea   o f   op t ima l   con t ro l   a r i s e s   i n   t he  

so lu t ion   of   the   op t imal  s ta te  t r a n s i t i o n   t r a j e c t o r i e s .   T e c h n i q u e s   i n  

use  and  under   s tudy  for   determinat ion  of   such  t ra jector ies   have  been 

c l a s s i f i e d   a s   d i r e c t  and   ind i rec t .  The d i r e c t  method is  cha rac t e r i zed  

by a sys temat ic  scheme t o   s e a r c h   f o r   t h e  optimum.  The  method o f   s t eepes t  

decent ,   o r   g rad ien t  method, i s  an  example.  Indirect  methods  include . 

Pontryagin 's  Maximum Pr inc ip le ,and   ca lcu lus   o f   var ia t ions   which   resu l t  

i n  a set of   d i f fe ren t ia l   equa t ions ,   the   boundary   condi t ions   be ing  

incomplete on both  ends  of   the   solut ion  interval .   These are c l a s s i f i e d  

a s  two point  boundary  value  problems. 

K n a ~ p ~ ~  has  introduced a technique  which  employs  the  gradient 

method fo r   so lv ing   t he  two point  boundary  value  problem  thus  combining 

both  direct   and  indirect   methods.  The approach  has  been  successfully  used 

t o  so lve   s ix   s imu l t aneous   non l inea r   d i f f e ren t i a l   equa t ions  by the  computer. 

An e f f o r t  is  being made t o  develop a code  which w i l l  so lve   the  two po in t  

boundary  value  problems  of  interest   in  nuclear  reactor  dynamics.  The 

r e s u l t  would make poss ib l e   t he   syn thes i s   o f  a l a rge  number  of  unsolved 

opt imal   cont ro l   p roblems  in   th i s   f ie ld .  

Presently,   only  the  one  problem  has  been  investigated  using  the 

Linear  Optimal  Stochastic  Control  Theory. Very l i t t l e  has  been  done i n  

the  way of   parameter   var ia t ions.  However, w i th   t he   ex i s t ence   o f   t he  



computer  techniques  investigation  of many parameter  changes i s  now 

possible  for  the  problem  of  example 1 wi th  l i t t l e  a d d i t i o n a l   e f f o r t .  

With the   comple t ion   o f   t he   f i r s t  example  an  extensive  study w i l l  

be made of   opt imal   c losed  loop  control   for   nuclear   rocket   engine  s tar t -up 

(shut-down). A c l e a r   d e f i n i t i o n  cf the   op t imal   cont ro l  law w i l l  be 

determined.  This  study w i l l  inc lude   parameter   var ia t ions .  A c lose   l i a son  

w i l l  be maintained  with  the Los Alamos Sc ien t i f ic   Labora tory  to keep up t o  

date   with  current   problems  and  to   obtain  valuable   advice.  

Linear  Optimal  Stochastic  Control  Theory  has  the  disadvantage 

tha t   t he   p rec i se   op t ima l  (o r  nominal)   t ra jectory  must  be previously known 

to  determine  the  optimal  feedback  process.  Thus d i f fe ren t   feedback   ga ins  

must   be  determined  for   each  t ransi t ion  t ra jectory  ant ic ipated.   For  

nuc lear - rocket   engine   s ta r t -up   th i s   does   no t   p resent  a problem,  but f o r  

most a p p l i c a t i o n s   t h i s  becomes  a task.   Optimal  closed  loop  control by 

o ther   synthes is   t echniques  w i l l  be compared wi th   th i s   one .  
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One of  the  problems of nuclear  rocket  dynamics  which may be 

t r e a t e d  by opt imizat ion  theory is the  problem  of minimum-time s ta r t -up .  

This  problem  requires  mathematical  models  for  the  neutron  dynamics,  for 

the   e f fec ts   o f   t empera ture   on   reac t iv i ty ,   and   for   the   necessary  

cons t r a in t s   such   a s   l imi t a t ions  on maximum the rma l   s t r e s ses .  An 

impor t an t   s imp l i f i ca t ion   r e su l t s   i f   t he   r e sponse   o f   t he   r eac to r   t o  a 

cons t an t   r a t e   o f   r eac t iv i ty   i nc rease   can  be descr ibed by a simple 

approximation. 

The r e a c t o r  dyanmics  equations  have  sim2le  solutions  only when 

t h e   r e a c t i v i t y  is not   an   expl ic i t   func t ion   of   t ime.  Among the  well-known 

approximate  solutions  are  the  "prompt- jump1' approximation' ,*  (hereinafter 

cal led  PJ) ,   in   which  the  prompt   neutron  l i fe t ime 1 is neglected,   and  the 

" r a p i d - r a t e "   a p p r ~ x i m a t i o n ~ ' ~   ( h e r e i n a f t e r   c a l l e d  RR), i n  which  the 

delayed-neutron  decay  constant A is neglected.  The combination  of  these 

two approximations  yields ,   in   the  usual   notat ion,  

where "0 is the   s teady-s ta te   neut ron   dens i ty   for  t < O  ( p = 0);  t h i s  

r e s u l t  may also be der ived  f rom  s imple  physical   considerat ions5.   In   the 

spec ia l   case   o f  a "ramp i npu t "   o f   r eac t iv i ty  ( p - y t ) ,  Eq. (1) becomes  4 
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The purpose  here is  to  determine  the  conditions  under  which Eqs. (1) 

and ( 2 )  are   usefu l   approximat ions .  

Assuming one group of delayed  neutrons,   the  dynamic equat ions 

are  

C 

Eliminat-ing c y i e l d s  

;I 19 + xc, 
. .  

a 

If w e  neg lec t  n i n  E q ,  ( 3 ) ,  t h a t  is, i f  

This is a l s o   o b t a i n e d  by s e t t i n g  J? = 0 i n  E q .  (5 ) .  E q .  (7) may be 

solved when p = y t ,   y i e l d i n g  

which is  the  well-known ramp response  in   the PJ approximation. E q .  (2)  

r e s u l t s   i f  X = 0 i n  E q o  ( 8 )  ; more bas i ca l ly ,  Eq. (1) may be der ived 

d i r e c t l y  from E q .  ( 3 )  by neglec t ing  A and r ep lac ing  Ac by i ts  s teady-  

s t a t e   v a l u e  Pno/a, 

To determine  the  range of v a l i d i t y   f o r   t h e  P J  approximation; 

compare E q s .  ( 6 )  and (7 )  t o   o b t a i n . ( g  -p) )I J?(i 3- Ap). 'Since  the 
2 .  
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main concern is the   c loseness   of   approach  to  prompt c r i t i c a l ,   t h e  

cond i t ion   fo r   va l id i ty   o f   t he  PJ approximation may be expressed as 

(9)  

F o r   f a s t  ramps, t h i s  becomes 

while   for   s low ramps, Eq. ( 9 ) . r e d u c e s   t o  

B - P>>VJ?$ 
Eq. ( l l ) ,   w r i t t e n  as  

i s  c i t e d  by Cohen' a s   t h e   c r i t e r i o n   € o r   v a l i d i t y   o f   t h e  prompt-jump 

approximation, I t s  usefu lness  i s  r e s t r i c t e d   t o   s l o w  ramps. 

For  the RR approximation,   se t   hc  = Bno/k? i n  Eq. ( 3 ) ,  d i f f e r e n t i a t e  

with  respect   to   t ime,   and  conpare  the  resul t   wi th  Eq. (5) .  The s i g n i f i -  

cant  requirement i s  then   seen   to  be e27 hp. For a ramp, t h i s   y i e l d s  

as   expected.  A s i m i l a r   r e s u l t  i s  obtained by expanding  Eqs. ( 2 )  and (8) 

i n  powers  of t and  comparing coe f f i c i en t s   o f  t . The v a l i d i t y  of Eq. (1) 

i s  then  governed by Eqs. ( 9 )  and  (12)  together. 

2 

An example i s  shown in   F ig .  1, for  which y = 0.1 do l l a r j s ec ,  

k 31 0.1 sec-',  and B / J  = 100 s e c - l .  The P J  curve is from Eq. (8). The 

exac t   so lu t ion   of  Eq. (5)  f o r  P =  y t  may be expressed i n  t e r m  of 



involv ing   the   e r ror   func t ion   resu l t s7 j8 .   (See   a l so   References  9 ,  10, 

and 11.) Here m/y - 1, and  the   exac t   so lu t ion  for n(0)  no  and 

Ii(0) = 0 is  f 

For t not   near  $/y (p rov ided   t<@/y)   t he   e r ro r   func t ions  have  large 

arguments,  and  the  asymptotic  forms  yield 

where x = (f3 - AA - y t ) / v .  This  becomes the  P J  approximation  for  

h$ly = 1 if x is l a rge   and   i f  ?J is neglec ted  compared t o  B. 

The RR curve is computed  from3r7 

For t not   near  $/y, t h i s  becomes 

n/no = 1 B - Y t  0 . 0 )  Y Y6 
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' The foregoing  considerations  have  not  included  mention of one 

impor tan t   charac te r i s t ic   o f   the  PJ approximation,  namely i t s  f a i l u r e  

for   very   smal l   va lues   o f  t. For a ramp i n p u t   s t a r t i n g  from a s teady  

s t a t e  a t  t = 0, Eq. (3)  r equ i r e s  that A(0) = 0. The PJ approximation 

y i e l d s  a d i s c o n t i n u i t y   i n  a t  t = 0; however, t h i s   r e p r e s e n t s  a 

t ransient   which  vanishes  i n  a time  comparable  with A / @  and  which  has  an 

e f f e c t  so sma l l   t ha t  i t  is not   observable   in   Fig.  1. 

To i l l u s t r a t e   t h e   c r i t e r i a ,   r e p l a c e  Eq. (9) by 

p - p 7 3 $ G .  

For  the  numerical   example,   this i s  1 - p /B  2 0.135, o r  t < 8.7 s e c .   I f  

Eq.  (12) is  replaced by 

t < 1/3h, (16) 

we have t < 3 . 3  sec.  As v e r i f i e d  by Fig. 1, Eq.  (12 )  is  dominant i n  

de te rmining   the   va l id i ty   o f  Eq.  ( 2 )  i n   t h i s  example;  for  large ramp ra t e s ,  

Eq.  (9) w i l l  dominate, 

The c r i t e r i o n   f o r   v a l i d i t y   o f   t h e  P J  approximation  given by 

Eq.  (15) may be d isp layed   graphica l ly   for  ramp inputs  by p l o t t i n g  

contours  of  constant pm as   in   F ig .  2. The co-ord ina te   axes   a re  @/l  

and ;/B - y/B, and pm is  given by 

B -  Pm - 3 $ G .  

Hence P, is t he  maximum r e a c t i v i t y   f o r  a given 1 and y for   which  the PJ 

approximation is va l id   w i th in   t he  limit s e t  by Ey. (15);   i .e. ,   the PJ 

approximation is  v a l i d   i n  a r eg ion   t o   t he   r i gh t   o f  a given  contour  for 

r e a c t i v i t i e s   a t   l e a s t  as l a r g e   a s   t h a t  on the  contour   def ining  the  region.  
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y = 0.1 $ / sec 

p/,f= 100 sec-1 

E x A c L j  PJ 

P 

0 2 4 6 a 10 12 

TIME ( S W )  

Fig .  1. Comparison of  Approximations:  Response of a R e a c t o r   t o  a 
Ramp Inpu t  of R e a c t i v i t y .  
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Note tha t   fo r   s low ramps the  limits are independent  of y, as   expected 

from Eq. (ll), whi le   fo r   l a rge r  ramp r a t e s  a progres s ive ly   sho r t e r  prompt 

neut ron   l i fe t ime is required.  

The corresponding  regions  of   val idi ty   for  Eq, (2 )  a r e   r e s t r i c t e d  

by both  Eqs. (15) and (16). From  Eq. (16) we f i n d   t h e   l i m i t i n g   r e a c t i v i t y  

The maximum reac t iv i ty   fo r   wh ich  Eq. (2 )  is v a l i d  is  therefore   the   smal le r  

of  the two values   given by Eqs. (17)  and (18). The modif ied  regions  are  

shown i n  Fig, 3, r e f l e c t i n g   t h e   f a c t   t h a t  Eq. ( 2 )  is n o t   u s e f u l   i f   t h e  

ramp r a t e  is too  small .   This is an  obvious  consequence  of  the  assumption 

of a constant   product ion  ra te   for   delayed  neutrons.  

The r e su l t s   a r e   ea s i ly   ex t ended   t o   s t a r t -up   ca l cu la t ions   i n   wh ich  

t h e   i n i t i a l   s t e a d y   s t a t e  is maintained by an  extraneous  source  of  neutrons.  

I n   t h i s   c a s e ,  Eq. (8) is  replaced by a much more complicated  form , but 

Eq. (1) has a simple  extension4: 

L 

where p is  t h e   i n i t i a l   ( n e g a t i v e )   r e a c t i v i t y .  
0 

Fur ther   s tudy  is necessary  before   the  preceding is  incorporated 

i n t o  an   inves t iga t ion  of o p t i m i z a t i o n   o f   f a s t   s t a r t - u p s ;   i n   p a r t i c u l a r :  

1) The approximate  solution, Eq. ( 2 )  o r  Eq. ( 8 ) ,  must be 
terminated  before prompt c r i t i c a l  because of the  obvious 
divergence,  and a  means  must be devised   for   car ry ing   an  
approximate  solution  smoothly p a s t  t h i s   p o i n t  and  matching 
i t  t o  an  asymptotic  form  of  the  exact  solution. 

2 )  The ef fec t   o f   t empera ture  on r e a c t i v i t y  must be incorporated;  
t h i s  need  not be i n c l u d e d   u n t i l   t h e   l a t e r   s t a g e s   o f  a start-  
up i f  t h e   i n i t i a l   l e v e l  is s u f f i c i e n t l y  low. 
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(=s/s~olloP) d/L 
Fig .  3 .  Regions of V a l i d i t y  for Eq. (2 ) .  . 
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The'problem of matching  approximate  solutions  across  prompt  critical  has 

be& investlgated by MacPheeT2 in  ..studies -of  reactor  accldents.  Numerous 

rcugh'calculations  have  been  made.which . .  provide  conservative  over- 

estimates  for  accident  studies.  'It ! L ,  is hoped  that  further  study  will  yield 

approximate  solutions  which  are  .more  suitable  for  the  fast  start-up 

optimization  problem. . .  
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